
5

ainty
ear
udy
cepts
le
ng
“how

of the
ed)

tiple
n, or
SAND99-0000 Distribution
Unlimited Release Category UC-70
Printed June 1999

DAKOTA, A Multilevel Parallel Object-Oriented Framework
for Design Optimization, Parameter Estimation, Sensitivity

Analysis, and Uncertainty Quantification

Michael S. Eldred
Structural Dynamics Department

William J. Bohnhoff
Simulation Technology Research Department

William E. Hart
Applied Mathematics Department

Sandia National Laboratories
Albuquerque, New Mexico 87185

Abstract

The DAKOTA (Design Analysis Kit for OpTimizAtion) iterator toolkit is a flexible, extensible
interface between simulation codes and iterative systems analysis methods. The toolkit
implements optimization with a variety of gradient and nongradient-based methods, uncert
quantification with nondeterministic propagation methods, parameter estimation with nonlin
least squares solution methods, and sensitivity analysis with general-purpose parameter st
capabilities. By employing object-oriented design to implement abstractions of the key con
involved in iterative systems analyses, the DAKOTA toolkit provides a flexible and extensib
problem-solving environment which uses point solutions from simulation codes for answeri
fundamental engineering questions, such as “what is the best design?”, “how safe is it?”, or
much confidence do I have in my answer?”.

In addition to these iterative systems analysis capabilities, advanced users can employ state
art capabilities for (1) exploiting parallelism at multiple levels (coarse-grained and fine-grain
and (2) building cascaded, nested, concurrent, and/or adaptive strategies which utilize mul
iterators and models to enact hybridization, sequential approximation, stochastic optimizatio
mixed continuous-discrete optimization.

This report serves as a user’s guide and reference for the DAKOTA software and provides
capability overviews, command specifications, and installation and execution instructions.
3

e
, the

dia-
Lee,

e

on
stem;

d

is

t is
 time
Acknowledgment

Development of DAKOTA was funded by the Engineering Science Research Foundation, th
Computer Science Research Foundation, Laboratory Directed Research and Development
Surety Defense Programs backbone, and the Accelerated Strategic Computing Initiative.

The development of this software involved many technical staff and contractors across San
Albuquerque and Sandia-Livermore. The authors would like to recognize Chris Moen, Roy
Juan Meza, and Charles Tong for their support of the OPT++ library and the SGI platform;
Michael Brayer, Craig Shierling, and Brian Driessen for their help in implementing the IDR
parser within DAKOTA; Jim Schutt for his consultation on IDR capabilities; Bruce Bainbridg
and Vicente Romero for their work on DAKOTA’s nondeterministic methods; Todd
Simmermacher for his work on the multidimensional parameter study method and the
continuation method for failure capturing; Brian Dennis and Chris O’Gorman for their work
the approximation interface class hierarchy; Ron Rhea for his work on the configuration sy
and David Outka for his vision and numerous contributions during the initial stages of the
DAKOTA development effort.

The authors also greatly appreciate the helpful comments made by Ben Blackwell and Tod
Simmermacher during the review process.

Documentation Versions

Since the DAKOTA architecture is flexible and extensible, its capabilities are continuously
evolving. Therefore, the DAKOTA software documentation is a living document for which th
SAND report is one snapshot in time. Updated documentation will be provided with major
software releases.

The software documentation can be published using either hardcopy or online formats. The
hardcopy format is used for generating the SAND report version, whereas the online forma
used for Web publishing of a hyperlinked Portable Document Format (PDF) version. At the
of printing, the online PDF document is publicly available from

http://endo.sandia.gov/DAKOTA/papers/Dakota_online.pdf

Contact the authors atmseldre@sandia.gov if problems are encountered in accessing this file.
4

..... 5

... 14

... 15

 17

1

7

19

3

1

5

6

3

 52

 52

. 54

5

54

55

55

56

. 58
Table of Contents

Table of Contents ..

List of Figures ..

List of Tables..

DAKOTA Introduction..

Motivation... 7

What is DAKOTA?... 1

Tutorial.. 19

Getting started...

A basic optimization problem... 19

Constructing the interface... 2

Creating a DAKOTA input file... 28

Running DAKOTA... 30

Interpreting the results .. 3

Some useful features of DAKOTA... 3

Restarting DAKOTA .. 35

The parallel interface .. 3

Decision Tables for DAKOTA Methods and Strategies... 4

Capability Introduction ...

Iterator and Strategy Hierarchies ..

Optimization Capabilities...

Introduction... 4

DOT Library ...

NPSOL Library...

OPT++ Library ...

SGOPT Library...

Uncertainty Assessment Capabilities ..
DAKOTA Manuals Table of Contents 5

5

8

 59

. 60

6

 61

. 62

6

3

63

 63

 65

. 66

67

.. 70

7

 71

1

2

3

4

5

 76

. 77

77

79
Introduction... 8

Monte Carlo Probability ... 5

Mean Value...

Nonlinear Least Squares Capabilities ...

Introduction... 0

Gauss-Newton...

Parameter Study Capabilities ..

Introduction... 2

Initial Values... 6

Data Cataloguing ..

Vector Parameter Study ..

List Parameter Study...

Centered Parameter Study..

Multidimensional Parameter Study...

Strategy Capabilities ..

Introduction... 0

Single Method...

Multilevel Hybrid Optimization ... 71

The Uncoupled Approach... 7

The Uncoupled Adaptive Approach ... 7

The Coupled Approach... 7

Sequential Approximate Optimization ... 7

Optimization Under Uncertainty... 7

Branch and Bound...

Simulation Interfacing ..

Dakota Interface Abstraction ..

The Application Interface ...
DAKOTA Manuals Table of Contents 6

0

81

81

1

81

82

2

2

2

83

4

5

5

7

8

0

0

 93

93

3

4

4

4

4

4

4

5

95

6

6

6

The Direct Function Application Interface... 8

3-piece Interface..

1-piece Interface..

The System Call Application Interface... 8

3-piece Interface..

1-piece Interface..

Additional Features... 8

File saving... 8

File tagging ... 8

Unix temporary files ... 83

Common filtering operations .. 83

Examples...

The NO_FILTER option... 83

The named filter option... 8

DAKOTA File Data Formats.. 8

Parameters file format (standard).. 8

Parameters file format (APREPRO) ... 8

Results file format... 8

Active set vector control ... 9

Examples... 9

Failure capturing ...

Failure detection..

Failure communication ... 9

System call application interfaces... 9

Direct application interfaces ... 9

Failure recovery .. 9

Abort ... 9

Retry.. 9

Recover ... 9

Continuation.. 9

The Approximation Interface..

Building an approximation ... 9

Updating an approximation... 9

Modifying an approximation .. 9
DAKOTA Manuals Table of Contents 7

7

7

7

8

. 99

99

00

1

1

1

1

1

2

3

4

04

07

7

07

0

0

11

112

12
Performing function evaluations... 9

The RSM Approximation Interface .. 9

The MARS Approximation Interface ... 9

The ANN Approximation Interface.. 9

Exploiting Parallelism...

Parallelism Introduction..

Enabling Software Components ... 1

Direct function synchronization.. 10

Synchronous.. 10

Asynchronous ... 10

System call synchronization ... 10

Synchronous.. 10

Asynchronous ... 10

Master-slave algorithm ... 10

Single-level parallelism .. 103

Multilevel parallelism ... 103

Pending Extensions... 10

Implementation of Parallelism.. 1

Single-processor DAKOTA implementation.. 105

Multiprocessor DAKOTA implementation .. 106

Specifying Parallelism .. 1

The Model... 10

The Iterator.. 1

Single-processor DAKOTA specification .. 108

Multiprocessor DAKOTA specification... 109

Running a parallel DAKOTA job... 11

Single-processor DAKOTA execution ... 11

Multiprocessor DAKOTA execution.. 110

Caveats.. 1

Commands Introduction..

Overview... 1
DAKOTA Manuals Table of Contents 8

2

8

18

9

21

1

22

2

3

3

3

3

4

4

4

5

26

. 127

27

28

2

29

32

33

. 134

34

35

3

36
IDR Input Specification File... 11

Common Specification Mistakes .. 11

Sample dakota.in Files.. 1

Sample 1: Optimization .. 11

Sample 2: Least Squares ... 1

Sample 3: Nondeterministic Analysis... 12

Sample 4: Parameter Study... 1

Sample 5: Multilevel Hybrid Strategy .. 12

Running DAKOTA... 12

Executable Location.. 12

Remote installations.. 12

Sandia developer-supported installations ... 12

Command Line Inputs... 12

Execution Syntax .. 12

Input/Output Management .. 12

Restart Management ... 12

Tabular descriptions.. 1

Interface Commands...

Description.. 1

Specification ... 1

Set Identifier.. 18

Application Interface .. 1

Approximation Interface... 1

Test Interface .. 1

Variables Commands..

Description.. 1

Specification ... 1

Set Identifier.. 16

Design Variables... 1
DAKOTA Manuals Table of Contents 9

38

39

... 141

41

42

4

43

44

4

145

45

46

46

6

7

7

48

48

9

. 150

50

51

52

2

4

4

55

. 156
Uncertain Variables .. 1

State Variables .. 1

Responses Commands...

Description.. 1

Specification ... 1

Set Identifier.. 13

Active Set Vector Usage... 1

Function specification... 1

Objective and Constraint Functions (Optimization Data Set) 14

Least Squares Terms (Least Squares Data Set) ..

Response Functions (Generic Data Set) ... 1

Gradient specification ... 1

No Gradients ... 1

Numerical Gradients ... 14

Analytic Gradients .. 14

Mixed Gradients.. 14

Hessian specification .. 1

No Hessians .. 1

Analytic Hessians.. 14

Strategy Commands..

Description.. 1

Specification ... 1

Single Method Commands.. 1

Multilevel Hybrid Optimization Commands .. 15

Sequential Approximate Optimization Commands .. 15

Optimization Under Uncertainty Commands ... 15

Branch and Bound Commands ... 1

Method Commands ...
DAKOTA Manuals Table of Contents 10

56

57

58

61

61

62

62

63

64

65

65

66

68

69

70

0

2

4

75

5

6

76

76

78

78

9

 180

80

80

81
Description.. 1

Specification ... 1

Method Independent Controls... 1

DOT Methods ... 1

Method independent controls.. 1

Method dependent controls... 1

NPSOL Method .. 1

Method independent controls.. 1

Method dependent controls... 1

OPT++ Methods ... 1

Method independent controls.. 1

Method dependent controls... 1

SGOPT Methods... 1

Method independent controls.. 1

Method dependent controls... 1

Genetic algorithms (GAs) ... 17

Coordinate pattern search (CPS)... 17

Solis-Wets... 17

Stratified Monte Carlo .. 174

Nondeterministic Methods.. 1

Monte Carlo Probability Method.. 17

Mean Value Method ... 17

Parameter Study Methods... 1

Vector Parameter Study .. 1

List Parameter Study... 1

Centered Parameter Study... 1

Multidimensional Parameter Study... 17

Installation Guide...

Distributions and Checkouts... 1

Basic Installation... 1

Configuration Details.. 1
DAKOTA Manuals Table of Contents 11

4

84

1

6

6

 187

87

. 192

92

9

3

01

. 204

04

0

 208

08

0

09

 216

16

6

Configuring with specific vendor optimizers ... 183

Configuring with the Message Passing Interface.. 18

Makefile Details.. 1

Caveats.. 86

Intel cross-compilation.. 18

System modifications.. 18

Installation Examples...

Sun Solaris platform ... 1

Textbook Example...

Textbook Problem Formulation.. 1

Methods... 13

Results... 193

Optimization ... 19

Least Squares .. 2

Rosenbrock Example ..

Rosenbrock Problem Formulation .. 2

Methods... 24

Results... 205

Cylinder Head Example...

Cylinder Head Problem Formulation.. 2

Methods... 29

Optimization Results... 2

Engineering Applications ..

Transportation Cask Example... 2

GOMA/EXODUS Application Example.. 216

Standard text_book example... 21

Example text_book recast in GOMA format: Filter Introduction 221
DAKOTA Manuals Table of Contents 12

8

5

1

42
DAKOTA Filter Tutorial .. 223

Dryer Design Example.. 22

Slot Coater Example ... 23

Appendix... 24

Additional References... 2
DAKOTA Manuals Table of Contents 13

DAKOTA Manuals List of Figures 14

List of Figures
Figure 1. Container wall-to-end-cap seal. .. 20

Figure 2. A graphical representation of the container optimization problem. 22

Figure 3. Fortran listing of the interface for the container example..................................... 24

Figure 4. C language listing of the container simulator example... 25

Figure 5. C++ listing of the container optimization example .. 26

Figure 6. DAKOTA input file for the container optimization example............................... 28

Figure 7. Example DAKOTA output ... 32

Figure 8. DAKOTA input file for the parallel container optimization example.................. 39

Figure 9. UNIX shell script file for parallel DAKOTA. .. 40

Figure 10. Sample output results for a parallel DAKOTA run .. 41

Figure 11. Generalizations of optimizer constraint handling capabilities.............................. 45

Figure 12. Iterator and Strategy Hierarchies .. 52

Figure 13. Example centered parameter study. .. 67

Figure 14. Example multidimensional parameter study... 68

Figure 15. Uncoupled multilevel hybrid optimization strategy ... 72

Figure 16. Uncoupled adaptive multilevel hybrid optimization strategy............................... 73

Figure 17. Sequential approximate optimization strategy.. 75

Figure 18. The DakotaInterface class hierarchy... 78

Figure 19. The Application Interface Concept... 79

Figure 20. Parameters file data format, standard option .. 86

Figure 21. Parameters file data format, APREPRO option.. 88

Figure 22. Results file data format ... 89

.

 4

. 48

9

50

. 51

.. 87

29

29

1

2

32

33

36

37

37

38

39

40

43

44

45

145

146

47

48

52

53

53

54
List of Tables
Table 1. Constraints ... 44

Table 2. Variables ... 46

Table 3. Local vs. global...7

Table 4. Smooth vs. nonsmooth...

Table 5. Algorithmic parallelism .. 4

Table 6. All inclusive summary ..

Table 7. Other method and strategy classifications ...

Table 8. Request vector codes...

Table 9. Specification detail for set identifier... 1

Table 10. Specification detail for application interfaces... 1

Table 11. Additional specifications for system call application interfaces......................... 13

Table 12. Additional specifications for direct application interfaces 13

Table 13. Specification detail for approximation interfaces... 1

Table 14. Specification detail for test interfaces... 1

Table 15. Specification detail for set identifier... 1

Table 16. Specification detail for continuous design variables .. 1

Table 17. Specification detail for discrete design variables.. 1

Table 18. Specification detail for uncertain variables specification 1

Table 19. Specification detail for continuous state variables.. 1

Table 20. Specification detail for discrete state variables... 1

Table 21. Specification detail for set identifier... 1

Table 22. Specification detail for active set vector usage specification 1

Table 23. Specification detail for optimization data sets .. 1

Table 24. Specification detail for nonlinear least squares data sets....................................

Table 25. Specification detail for generic response function data sets

Table 26. Specification detail for numerical gradients ... 1

Table 27. Specification detail for mixed gradients ... 1

Table 28. Specification detail for single_method strategies ... 1

Table 29. Specification detail for uncoupled multi_level strategies................................... 1

Table 30. Specification detail for coupled multi_level strategies....................................... 1

Table 31. Specification detail for seq_approximate_opt strategies 1
DAKOTA Manuals List of Tables 15

54

55

60

62

64

67

T++

67

68

68

68

70

71

71

72

72

74

74

5

76

77

77

78

79

79
Table 32. Specification detail for opt_under_uncertainty strategies................................... 1

Table 33. Specification detail for branch_and_bound strategies .. 1

Table 34. Specification detail for the method independent controls................................... 1

Table 35. Specification detail for the DOT methods .. 1

Table 36. Specification detail for the NPSOL SQP method... 1

Table 37. Specification detail for the OPT++ conjugate gradient method 1

Table 38. Specification detail for unconstrained and bound-constrained Newton-based OP
methods 167

Table 39. Specification detail for barrier-constrained Newton OPT++ methods 1

Table 40. Specification detail for the OPT++ bound constrained ellipsoid method........... 1

Table 41. Specification detail for the OPT++ PDS method.. 1

Table 42. Specification detail for OPT++ new method testing .. 1

Table 43. Specification detail for SGOPT method dependent controls.............................. 1

Table 44. Specification detail for the SGOPT GA methods... 1

Table 45. Specification detail for SGOPT real GA crossover and mutation 1

Table 46. Specification detail for SGOPT integer GA crossover and mutation................. 1

Table 47. Specification detail for the SGOPT CPS methods.. 1

Table 48. Specification detail for the SGOPT Solis-Wets method..................................... 1

Table 49. Specification detail for the SGOPT sMC method... 1

Table 50. Specification detail for the Monte Carlo probability method 17

Table 51. Specification detail for the mean value method.. 1

Table 52. final_point specification detail for the vector parameter study 1

Table 53. step_vector specification detail for the vector parameter study.......................... 1

Table 54. Specification detail for the list parameter study ... 1

Table 55. Specification detail for the centered parameter study... 1

Table 56. Specification detail for the multidimensional parameter study 1
DAKOTA Manuals List of Tables 16

stems
ral

 aid to
ex
rs are
 or
ance

ion of

at an
e
ight,

he

their
tter

inates
le and

quence
ile
y

s. By
tions,

e
as
DAKOTA Introduction
Motivation on page 17What is DAKOTA? on page 17Tutorial on page 19 Getting started on page 19Some useful features of DAKOTA on page 35Decision Tables for DAKOTA Methods and Strategies on page 43

Motivation

Advanced computational methods have been developed for simulating complex physical sy
in disciplines such as fluid mechanics, structural dynamics, heat transfer, nonlinear structu
mechanics, shock physics, and many others. In many situations simulators can be used to
generate highly accurate models of real processes. These simulators can be an enormous
engineers who want to develop an understanding and/or predictive capability for the compl
behaviors that are often observed in the respective physical systems. Often, these simulato
employed as virtual prototypes, where a set of predefined system parameters, such as size
location dimensions and material properties, are adjusted to improve or optimize the perform
of a particular system, as defined by one or more system performance objectives. Optimizat
the virtual prototype then requires running the simulator, evaluation the performance
objective(s), and adjusting the system parameters in an iterative and directed way, such th
improved or optimal solution is obtained for the simulation as measured by the performanc
objective(s). System performance objectives can be formulated, for example, to minimize we
cost, or defects; to limit a critical temperature, stress, or vibration response; or to maximize
performance, reliability, throughput, reconfigurability, agility, or design robustness. One of t
primary motivations for the development of DAKOTA has been to provide engineers with a
systematic and rapid means of obtaining improved or optimal design approximations from
simulator-based models. Making this capability available to engineers generally leads to be
designs and improved system performance at earlier stages of the design phase, and elim
some of the dependence on real prototypes and testing, thereby shortening the design cyc
reducing overall product development costs.

In addition to improving performance objectives through optimization, computational
simulations can also be used as tools to quantify uncertainty and assess risk in high-conse
events, to investigate the sensitivity of critical responses to model variations, and to reconc
model predictions with experimental observations. In each of these studies (as well as man
others), computational simulations are used to provide the necessary informational building
blocks for answering fundamental engineering questions about the predictive accuracy of
computational models and the performance, safety, and reliability of products and processe
providing a flexible and extensible framework for the answering of these fundamental ques
the utility and impact of computational methods can be greatly extended. This is what the
DAKOTA activity strives to achieve.

What is DAKOTA?

The DAKOTA (Design Analysis Kit for OpTimizAtion) provides a flexible, extensible interfac
between your simulator and a variety of iterative methods and strategies. While DAKOTA w
User’s Instructions DAKOTA Introduction - Motivation 17

ts, the
ic
, and
ny
ilities

 you

de at

ode
fe is

es
an be

of

ble
ods
and

ization

re:

aches
 the

are

s into

can be
originally conceived as an easy-to-use interface between simulation codes and numerical
optimization codes, recent versions have been expanded to include other types of iterative
analysis. In addition to an abundance of optimization methods and strategies that it suppor
present version of DAKOTA also implements uncertainty quantification with nondeterminist
propagation methods, parameter estimation with nonlinear least squares solution methods
sensitivity analysis with general-purpose parameter study capabilities. Thus, one of the ma
advantages that DAKOTA has to offer is that access to a very broad range of iterative capab
can be obtained through a single, relatively simple interface between DAKOTA and your
simulator. DAKOTA manages interfacing with the iterative methods and strategies, relieving
of this often difficult and time consuming development burden.

Each of the numerical iterative methods supported by DAKOTA executes your simulation co
a series of different design parameter values. DAKOTA, in conjunction with the iterative
methods that it supports, can utilize the this series of point solutions from your simulation c
to answer fundamental engineering questions, such as “what is the best design?”, “how sa
it?”, or “how much confidence do I have in my answer?”. In addition to providing this
environment for answering systems performance questions, the DAKOTA toolkit also provid
an extensible platform for the development of customized methods and strategies, which c
used to increase the robustness and efficiency of the iterative analyses for computationally
complex engineering problems (see [Eldred, M.S., 1998]).

The DAKOTA toolkit is a flexible problem-solving environment that offers a systematic way
obtaining iterative solutions to user generated design problems. Should you want to try a
different type of iterative method or strategy with your simulator, it will only be necessary to
change a relatively few commands in the DAKOTA input and start a new analysis. The flexi
yet systematic approach to DAKOTA command syntax allows you to change between meth
and strategies in an efficient manner, the need to learn a completely different style of comm
syntax and the need to reconstruct of the interface each time you want to use a new optim
or other iterator method is eliminated.

Five architectural components define and control the flow of data through DAKOTA, these a
strategies, methods, variables, responses, andinterfaces. These five components define
separate areas of flexibility and extensibility.Strategies manage the interplay of the other
components and allow you to build sophisticated and adaptive schemes based on method
combination and hybridization, management of approximate models, incorporation of
uncertainty into optimization processes, management of parallelism, etc. Other novel appro
to the systems analysis process can be added as they are envisioned and used to leverage
developments within the other architecture components.Methods include the major categories
optimization, uncertainty quantification, nonlinear least squares, and parameter study, and
extensible, both through the inclusion of new algorithms within a category, and through the
addition of new iterator branches that fit the general model of repeated mapping of variable
responses through simulation codes.Variables currently include design, uncertain, and state
variable specifications for continuous, discrete, and mixed problem domains.Responses include
function values, gradients, and Hessians (an optimization data set), where these functions
User’s Instructions DAKOTA Introduction - What is DAKOTA? 18

sponse
tly,

sfully
ow

od

 of

le on
d

will
l

facture
s and
e end
objective and constraint functions, residual functions (least squares data set), or generic re
functions (uncertainty and parameter study data sets) depending on the iterator in use. Las
interfaces provide access to simulation codes, test functions, and approximations through a
variety of communication protocols. In the DAKOTA architecture,strategies manage how
methods mapvariables into responses through the use ofinterfaces.

Tutorial

Getting started

In this section you will be given instructions on how to set up and run a simple DAKOTA
optimization analysis. It is assumed that the DAKOTA install procedure, as outlined in the
Installation Guide on page 180, has been completed successfully, including configuration with
the NPSOL and/or DOT optimization package(s) enabled. Once DAKOTA has been succes
installed you are ready to proceed with the tutorial. A later tutorial example will show you h
to set up and run a DAKOTA analysis in parallel processing mode. If you intend to run this
example you will need to configure DAKOTA with MPI as described in Configuring with the
Message Passing Interface on page 184.

The getting started tutorial will proceed by having you set up and run a sample numerical
optimization problem in DAKOTA. In this tutorial you will learn how to:

• Construct a simple interface between an evaluation code and DAKOTA

• set up a DAKOTA input file including strategy, interface, variables, responses, and meth
specifications

• initiate a DAKOTA run

• interpret a DAKOTA output file

Working through the example should give you a good understanding of the basic operation
DAKOTA. Additional examples, which will allow you to further your understanding of
DAKOTA, appear in the sections titled Textbook Example on page 192, Rosenbrock Examp
page 204, Cylinder Head Example on page 208, Engineering Applications on page 216, an
Some useful features of DAKOTA on page 35, as well as throughout the text.

A basic optimization problem

As a means of familiarizing new users to the DAKOTA software and as a means of
demonstrating some of the capabilities of DAKOTA, a simple example optimization problem
be worked. For this example, suppose that a high-volume manufacturer of light weight stee
containers wants to minimize the amount of raw sheet material that must be used to manu
a 1.1 quart cylindrical-shaped can, including waste material. Material for the container wall
end caps is stamped from stock sheet material of constant thickness. The seal between th
User’s Instructions DAKOTA Introduction - Tutorial 19

e end
n.

r end
2% and
 a
 the

ely.

ith
s a

nomina l

contain e

wall ar e
caps and container wall is manufactured by a press forming operation on the end caps. Th
caps can then be attached to the container wall forming a seal through a crimping operatio

Figure 1 Container wall-to-end-cap seal.

For preliminary design purposes, the extra material that would normally go into the containe
cap seals is approximated by increasing the cut dimensions of the end cap diameters by 1
the height of the container wall by 5%, and waste associated with stamping the end caps in
specialized pattern from sheet stock is estimated as 15% of the cap area. The equation for
area of the container materials including waste is

(1)

or

(2)

whereDandHare the diameter and height of the finished product in units of inches, respectiv
The volume of the finished product is given by

(3)

The equation for area is the objective function for this problem; it is to be minimized. The
equation for volume is an equality constraint; it must be satisfied at the conclusion of the
optimization problem. Any combination ofD anH that satisfy the volume constraint produce a
feasible solution (although not necessarily the optimal solution) to the area minimization
problem, and any combination that do not satisfy the volume constraint generate aninfeasible
solution. Thus, in this optimization problem, the area objective function is to be minimized w
respect to parametersD andH, subject to satisfaction of the volume constraint. The area that i

wall

end cap

A 2

end cap

waste

material

factor 
 
 
 
 
 

×

end cap

seal

material

factor 
 
 
 
 
 

×
nominal

end cap

area 
 
 
 
  container

wall seal

material

factor 
 
 
 
 
 

+×







×=

A 2 1.15() 1.12()πD
2

4
------ 1.05()πDH+=

V πD
2
H

4
---------- 1.1qt() 57.75in

3
qt⁄()= =
User’s Instructions DAKOTA Introduction - Tutorial 20

r
ated

r to

for the
er,
ea

s

ent.

f

e
 the

h the
minimum subject to the volume constraint is theoptimal area, and the corresponding values fo
the parametersDandHare the optimal parameter values. The optimization problem can be st
in a more compact and standardized form as

(4)

It is important that the equations supplied to a numerical optimization code be limited to
generating only physically realizable parameters as optimizers. It is often up to the enginee
supply these limits, usually in the form of parameter bound constraints. General purpose
numerical optimizers do not typically have the capability to differentiate between physically
meaningful and unmeaningful parameter values. For example, by observing the equations
area objective function and the volume constraint, it can be seen that by allowing the diametD,
to become negative, it is algebraically possible to generate relatively small values for the ar
that also satisfy the volume constraint. Negative values forD are of course physically
meaningless. Therefore, to ensure that the numerically-solved optimization problem remain

meaningful, a bound constraint of must be included in the optimization problem statem
A positive value forH is implied since the volume constraint could never be satisfied ifH were

negative. However, a bound constraint of can be added to the optimization problem i
desired.

A graphical view of the container optimization problem appears in Figure 2. The 3-D surfac
defines the area,A, as a function of diameter and height. The curved line that extends across
surface defines the areas that satisfy the volume equality constraint,V. Graphically, the container
optimization problem can be viewed as one of finding the point along the constraint line wit
smallest 3-D surface height in Figure 2. This point corresponds to the optimal or minimizing
values for diameter and height of the final product.

 min 2 1.15() 1.12()πD
2

4
------ 1.05()πDH+

subject to: πD
2
H

4
---------- 1.1qt()– 57.75in

3
qt⁄() 0=

D 0≥

H 0≥
User’s Instructions DAKOTA Introduction - Tutorial 21

me
 as

traint
Figure 2 A graphical representation of the container optimization problem.

The numerical optimizers that are presently supported by DAKOTA accept only inequality
constraints, in a less-than-or-equal-to format, and not equality constraints such as the volu
constraint in this example. However, it is possible to represent any equality constraint, such

, with two inequality constraints, and , since the only time both

inequalities are satisfied is when is satisfied. Given the requirements on the cons
functions and variable bounds, the optimization problem can restated as

2

4

6

8

0

5

10

15

D, in.

min.

H, in.

V=1.1qt.

g x() 0= g x() 0≤ g– x() 0≤
g x() 0=
User’s Instructions DAKOTA Introduction - Tutorial 22

ing

e form
. In

nd
nd
les

 the

ction

to a
cted
lume

.

ing
 the
n of

 or
riables,

le the

r the
(5)

This statement of the optimization problem will be incorporated into a simulator in the follow
sections. The termsimulator is defined within DAKOTA in a general sense. A simulator is any
computer code that can accept variables as input, and compute and output responses in th
of function values and possibly gradient and second partial derivative (Hessian) information
terms of the DAKOTA iterator for this optimization example,DandHarevariables,and the area
objective function, and the volume constraint functions are contained within the simulator, a
are to be used to generateresponses. Bound constraints are handled internally by optimizers a
do not need to be managed via a users interface. The mechanisms for receiving the variab
from DAKOTA into the simulator, computing the responses, and passing the responses from
simulator back to DAKOTA comprise theinterface. What remains to be done before DAKOTA
can be used to solve this optimization problem is the construction of this interface, and sele
of one or moremethods andstrategies from the DAKOTA library. These tasks will be covered
in the following sections.

Constructing the interface

An interface in the DAKOTA environment is a user routine that is responsible for mapping
variables into responses. While a practical implementation of an interface might include calls
finite element or finite difference simulation code, a simple example interface will be constru
in this section that will be used to compute values for the area objective function and the vo
constraint functions from algebraic equations using values ofD andH as input variables. Code
for reading the input variables and writing the output responses is also part of the interface

DAKOTA offers more than one option for initiating execution of the interface and for perform
the input of variables and output of responses. For the purpose of an introductory example
The System Call Application Interface on page 81 approach will be used to initiate executio
the interface. Another interface possibility is given in the section titled The Direct Function
Application Interface on page 80. For the system call approach, the interface exists as one
more stand-alone executable programs. One execution of the interface reads one set of va
executes the simulator, which performs any necessary calculations, and outputs one set of
responses. For this example the 1-piece Interface on page 81 will be used. For this examp
interface will house the input, computational, and output parts of the interface in a single
executable. The 3-piece Interface on page 81 is an alternative that can be used to obtain a
preprocessor-simulator-postprocessor interface format. Example listings of the interface fo

 min 2 1.15() 1.12()πD
2

4
------ 1.05()2πDH+

subject to: πD
2
H

4
---------- 1.1qt()– 57.75in

3
qt⁄() 0≤

π–
D

2
H

4
---------- 1.1qt() 57.75in

3
qt⁄() 0≤+

D 0 H 0≥,≥
User’s Instructions DAKOTA Introduction - Tutorial 23

++

e

container optimization problem are given in Figure 3 through Figure 5 for Fortran, C, and C
languages, respectively.

Figure 3 Fortran listing of the interface for the container example.
c***
c***
 program container
c***
c***
 integer num_fns,num_vars,req(1:3)
 double precision fval(1:3),D,H
 character*80 infile,outfile,instr
 character*25 valtag(1:3)
 double precision PI /3.14159265358979/

c get the input and output file names from the command line
c using the fortran 77 library routine getarg
 call getarg(1,infile)
 call getarg(2,outfile)

c*************************************
c read the input data from DAKOTA
c*************************************
 open(11,FILE=infile,STATUS=’OLD’)

c get the number of variables and function evaluation requests
 read(11,*)num_vars,instr,num_fns,instr

c get the values of the variables and the associated tag names
 read(11,*)H,instr
 read(11,*)D,instr

c get the evaluation type request for the associated function number
 do 10 i=1,num_fns
 read(11,*)req(i),instr
 10 continue

 close(11)

c**
c compute the objective function and constraint values
c**
 if(req(1).eq.1) fval(1)=0.644*PI*D**2+1.05*PI*D*H
 if(req(2).eq.1) fval(2)=0.25*PI*H*D**2-63.525
 if(req(3).eq.1) fval(3)=-0.25*PI*H*D**2+63.525

c**
c write the response output for DAKOTA
c**
 valtag(1)=’area’
 valtag(2)=’volume_constraint_1’
 valtag(3)=’volume_constraint_2’

 open(11,FILE=outfile,STATUS=’UNKNOWN’)

 do 20 i=1,num_fns
 if(req(i).eq.1) then
 write(11,’(E22.15,1X,A)’),fval(i),valtag(i)
 endif
 20 continue

 close(11)

 end

The one-piece approach assumes that all file I/O pre and post-processing are present in on
callable program or driver routine. File names are supplied on the command line for the
User’s Instructions DAKOTA Introduction - Tutorial 24

g

the

and
is
interface, e.g. an internal system call by DAKOTA to the one-piece interface looks somethin
like:

system("container variables.in responses.out");

wherecontainer is the simulator executable for this example, and the variables input and
responses output file names follow on the same line. File names can then be accessed by
interface using a command line argument procedure (library routinegetarg in Fortran or the
arrayargv in C or C++). While not strictly needed when file names are not changing, comm
line retrieval of the file names is required when unique name assignment (e.g. file tagging)
used.

Figure 4 C language listing of the container simulator example.
#include <stdio.h>
#include <stdlib.h>

/**/
/* container.c - container optimization example */
/**/
void main(int argc, char **argv)
{
FILE *fileptr;
double fval[3],D,H;
int i,num_vars,num_fns,req[3];
char *infile,*outfile,in_str[81];
char *valtag[]={"area\n",
 "volume_constraint_1\n",
 "volume_constraint_2\n"};
const double PI = 3.14159265358979;

/* assign the input and output file names from the command line */
infile = argv[1];
outfile = argv[2];

/******************************/
/* read the input from DAKOTA */
/******************************/
fileptr = fopen(infile,"r");

/* get the number of variables and functions*/
fscanf(fileptr,"%d %80s %d %80s",&num_vars,in_str,&num_fns,in_str);

/* get the values of the variables and the associated tag names */
fscanf(fileptr,"%lf %80s",&H,in_str);
fscanf(fileptr,"%lf %80s",&D,in_str);

/* get the evaluation type request */
for(i=0; i<num_fns; i++)
 fscanf(fileptr,"%d %80s",&req[i],in_str);

fclose(fileptr);

/**/
/* compute the objective function and constraint values */
/**/
 if(req[0]==1)
 fval[0]=0.644*PI*D*D+1.04*PI*D*H;
 if(req[1]==1)
 fval[1]=0.25*PI*H*D*D-63.525;
 if(req[2]==1)
 fval[2]=-0.25*PI*H*D*D+63.525;

/**/
/* write the response output for DAKOTA */
/**/
fileptr = fopen(outfile,"w");
User’s Instructions DAKOTA Introduction - Tutorial 25

ead
e

ume
econd

ation

e
n, or

ntrol

l be

ers
led
for(i=0; i<num_fns; i++)
 if(req[i]!=0)
 fprintf(fileptr,"%23.15e %s",fval[i],valtag[i]);

fclose(fileptr);

}

For the one-piece interface, the i/o routines associated with the simulator must be able to r
and write files in one of the allowable DAKOTA formats. For the purposes of this example th
input file generated by DAKOTA for the simulator will have the following format:

2 variables 3 functions
<double> D
<double> H
1 ASV_1
1 ASV_2
1 ASV_3

The simulator must be able to read this file to compute the objective and constraint function
values. The first line of the file indicates that there are two variables for this optimization
problem:D andH, and three functions: (1) the area objective function and (2) and (3) the vol
constraint functions. Bound constraints do not need to be computed by the simulator. The s
and third lines are used to transmit values of the variablesD andH from DAKOTA to the
simulator. The<double> descriptors represent real values ofD andH that would appear in an
actual simulator input file. The last three lines are encoded requests for the type of comput
that is to be associated with each of the three functions. The value of1 in first character position
of the last three lines indicates that a function value is being requested for each of the thre
functions. Other numbers can be used to make requests for gradient or Hessian informatio
some combination of the function, gradient, and Hessian information, see the section titled
DAKOTA File Data Formats on page 85 and specifically the subsection Active set vector co
on page 90 for more information. However, for this example, only function values will be
requested by DAKOTA and any gradient information needed by the numerical optimizer wil
computed internally by DAKOTA through finite differencing. The strings beginning with ASV
on the last three lines of the file are the default tag names for each function. Function numb1
through3 in the on the end positions of the last three lines correspond to the functions labe
fval(1) throughfval(3) in the Fortran listing for the container simulator, or functions
labeledfval[0] throughfval[2] in the C and C++ listings, respectively. It is also possible
to assign tag names to these requests.

Figure 5 C++ listing of the container optimization example
#include <iostream.h>
#include <iomanip.h>
#include <fstream.h>

//**
// container.C - C++ container optimization example
//**

int main(int argc, char** argv)
{

 //******************************
 // read the input from DAKOTA
User’s Instructions DAKOTA Introduction - Tutorial 26

e
 are

f

 //******************************
 fstream fin(argv[1],ios::in);

 // get the number of variables and functions
 int num_vars, num_fns;
 char in_str[81];
 fin >> num_vars >> in_str >> num_fns >> in_str;

 // get the values of the variables and the associated tag names
 double D,H;
 fin >> H >> in_str;
 fin >> D >> in_str;

 // get the evaluation type request
 int* req = new int [num_fns];
 int i;
 for(i=0; i<num_fns; i++) {
 fin >> req[i];
 fin.ignore(256, ’\n’);
 }

 fin.close();

 //**
 // compute the objective function and constraint values
 //**
 double *fval = new double [num_fns];
 const double PI = 3.14159265358979;
 if(req[0]==1)
 fval[0]=0.644*PI*D*D+1.04*PI*D*H;
 if(req[1]==1)
 fval[1]=0.25*PI*H*D*D-63.525;
 if(req[2]==1)
 fval[2]=-0.25*PI*H*D*D+63.525;

 //**
 // write the response output for DAKOTA
 //**
 fstream fout(argv[2],ios::out);
 fout.precision(15);
 fout.setf(ios::scientific);
 fout.setf(ios::right);
 char *val_tag[]= {"area\n",
 "volume_constraint_1\n",
 "volume_constraint_2\n"};

 for(i=0; i<num_fns; i++)
 if(req[i]=1)
 fout << setw(23) << fval[i] << " " << val_tag[i];

 fout.close();

 return 0;
}

In this examplenum_fns represents the total number of objective and/or constraint function
evaluations in the model. For the container optimization example there is one area objectiv
function and two volume inequality constraint functions. Requests for a function evaluation
stored in variablereq(i); the objective function request is stored inreq(1) and the volume
constraint requests are stored inreq(2) andreq(3) , respectively, for the Fortran listing. A
value of1 for req(i) indicates compute the associated function evaluation, while a value o0
indicates do not compute. The objective function value is stored infval(1) and the volume
constraint values are stored infval(2) andfval(3) , respectively. For this example the
evaluation request (stored inreq(i)) will consist strictly of requests or nonrequests for
User’s Instructions DAKOTA Introduction - Tutorial 27

o

ace

r

rder

s for

nk
t on

ce

e input
function values. Any gradient or Hessian information needed by the numerical optimizer is
computed internally by DAKOTA through finite differencing and additional calls to the
simulator, thereby relieving you of this burden. However, if the interface has the capability t
compute gradient and/or Hessian information internally, DAKOTA also has the capability to
make requests for this information if it is needed by the numerical optimizer. Such an interf
could contain branching and looping structures to handle specific requests for gradient and
Hessian information. However, the limited complexity of these versions of the interface are
suitable for this simple example.

The simulator-to-DAKOTA response output has the following format for the container
optimization problem:

<double> area
<double> volume_constraint_pos
<double> volume_constraint_neg

This file contains one line for each of the function values that was requested in the simulato
input file. The <double> descriptors represent real values of each associated function tag (area,
for example). The function tags are optional. They are in fact ignored by DAKOTA, and the o
of the numeric data is assumed to be in the same as the order of requests in the input file.
Function tags do however increase the readability of the output files. The only requirement
function tags is that they be separated from the numeric data by a blank space or new line
character, that they contain at least one character (A-Z or a-z), and that they contain no bla
spaces. Output of gradient and Hessian information is also possible. See Results file forma
page 88 for more information.

Creating a DAKOTA input file

A DAKOTA input file is a collection of character and numeric information that describes the
problem to be solved. For this example, the file will be nameddakota_container.in . The
input file contains fields describing what strategy, method, variables, responses, and interfa
components of DAKOTA are to be used to solve the problem. The contents of the DAKOTA
input file must not conflict with the problem as defined in the simulator. A DAKOTA input file
for the container optimization problem is given in Figure 6. Any line beginning with a ‘#’
character is treated as a comment. Presence of the backslash (\) character is required in th
file to indicate the continuation of a major specification (interface , variables ,
strategy , method , or response) onto the next line of the file. The last line of each
specification is not terminated with a ’\’ character since it marks the specification’s end.

Figure 6 DAKOTA input file for the container optimization example.
Interface specification

interface, \
 application, system \
 analysis_driver = ’container’

Variables specification
variables, \
 continuous_design = 2 \
 cdv_descriptor ’H’ ’D’ \
 cdv_initial_point 4.5 4.5 \
 cdv_lower_bounds 0.0 0.0
User’s Instructions DAKOTA Introduction - Tutorial 28

er on

sis.

int
blem
ith

ough

ple,

 by

nded

 is

s in
Strategy specification
strategy, \
 single_method

Method specification
method, \
 npsol_sqp

Responses speification
responses, \
 num_objective_functions = 1 \
 num_nonlinear_constraints = 2 \
 numerical_gradients \
 method_source dakota \
 interval_type central \
 fd_step_size = 0.001 \
 no_hessians

In the first four lines ofdakota_container.in the interface specification is made. The
system call application interface is specified with the command

application, system\

andcontainer , the name of the executable simulator file, is specified as the analysis driv
the following line.

Next, the strategy and method specifications are made. For this example asingle_method
strategy is specified, which means that only one optimizer will be used to perform the analy
The numerical optimizer that will be used for this analysis is thenpsol_sqp optimizer. This
optimizer is selected in the method specification. The NPSOL library provides an
implementation of the SQP or sequential quadratic programming method for nonlinearly
constrained local optimization. For this method it is assumed that the objective and constra
functions have continuous first and second partial derivatives. It is also implied that the pro
possesses a single local optimal value. However, this method can be applied to problems w
more than one local optimum, if the locally optimal value is considered to be of use even th
it may not be the global optimum.

Following specification of the method, the variables specifications are made. For this exam
the number of design variables is equal to2 and this count is set with the command

continuous_design = 2\

wherecontinuous_design variables have been specified since any real value within the
bounds is a possible solution. Next the name tags for the optimization variables (D andH) are set
with the command

cdv_descriptor ’H’ ’D’\

wherecdv_descriptor stands for continuous design variable descriptor. This is followed
thecdv_initial_point to be used at the start of the optimization analysis, and then the
values of the variable bounds. Since only lower bounds are specified, the problem is unbou
above.

After declaring the variables their associated specifications are, the response specification
made in filedakota_container.in . First, the number of objective functions is set to1 (for
the area objective function) and the number of nonlinear constraints (the volume constraint
User’s Instructions DAKOTA Introduction - Tutorial 29

ral
ts are

utput
ponse

rical
thod

le

o

 do so

t is

rd

the
this example) is set to2. The following four lines in the response specification state that cent
finite difference gradients are to be used by the numerical optimizer, and that these gradien
to be computed by DAKOTA using a step size of0.001 . These specifications are necessary
since they control what DAKOTA asks for and expects in the simulator input and response o
files, respectively, and what internal computations are to be performed on the simulator res
output to generate the gradient approximation. The commandno_hessians is specified since
the interface will not return the Hessian information, rather thenpsol_sqp numerical
optimizer generates its own internal gradient-based Hessian approximation.

Thenpsol_sqp optimizer was selected because it has the capability to handle nonlinear
objective and constraint functions. Thedot_mmfd , dot_slp , anddot_sqp methods also
possess these capabilities. DAKOTA can be used to easily change between installed nume
optimizers. For the DOT optimizer methods this can be achieved by simply replacing the me
specificationnpsol_sqp in the DAKOTA input file with one of the three appropriate DOT
methods. See NPSOL Method on page 162 and DOT Methods on page 161 for additional
information.

Running DAKOTA

Once the interface has been constructed, the process of executing DAKOTA for the examp
problem is relatively simple. One possible way to execute the example is to place
dakota_container.in and the interface executable,container , in a directory with a
path to the DAKOTA executable. The directory $DAKOTA/test is one such directory. It is als
possible to create a link to the dakota executable with the UNIXln command in some other
directory. If the container simulator executable has not been created it will be necessary to
with a command such as

f77 -o container container.f

for Fortran, or
cc -o container container.c

for C, or
CC -o container container.C

for C++. The actual compile commands may vary from system to system. What is importan
that an executable, of one of the preceding example simulators, with the namecontainer
exists in the working directory for this example. Once the files are located in an appropriate
directory DAKOTA is executed from the UNIX prompt for the container example with the
command:

dakota -i dakota_container.in

DAKOTA should take a few seconds to load and execute. Output should print to the standa
output device. The DAKOTA output can also be redirected to a file using the syntax

dakota -i dakota_container.in > dakota.out

wheredakota.out can be replaced by any desired file name. Output will be discussed in
following section. See Running DAKOTA on page 123 for a more detailed discussion.
User’s Instructions DAKOTA Introduction - Tutorial 30

st

n.

n

 is

 the

A
der
nd

e the
est
he

or
rs in
bed

ator.
tput,
Interpreting the results

Figure 7 shows a partial listing of the output for the container optimization example. The fir
several lines, down to the line that reads "Running Single Method Strategy... ",
reflect information that was specified in the DAKOTA input file or during DAKOTA installatio
The lines that follow, down to the line that begins with "NPSOL exits with INFORM
code = 0 ", contain information about the function and gradient evaluations that have bee
requested by NPSOL. Several of the function evaluations and gradient-related function
evaluations have been omitted from this listing for brevity.

The values of the optimization variables and the initial objective and constraint function
evaluations are listed following the line that reads "Begin Function Evaluation
1". The values of the optimization variables are labeled with the tagsD andH, respectively, the
value of objective function is labeled with the tagobj_fn, and the values of the volume
constraint are labeled with the tagsnln_con1 andnln_con2 , respectively. Note that one of
the constraint function values is initially violated (< 0) because the initial design parameters
were not feasible. However, the numerical optimizer has the capability to find a design that
both feasible and optimal for this example.

Between the optimization variables and the function values the content of the system call to
simulator is displayed as " (container /var/tmp/aaaa0041c /var/tmp/
baaa0041c) " , with container being the name of the simulator and/var/tmp/
aaaa0041c and/var/tmp/baaa0041c being the path and names belonging to the
DAKOTA-to-simulator input and simulator-to-DAKOTA output files, respectively. Temporary
files have been used in this case and these are deleted as soon as the simulator-to-DAKOT
output file is read. However, it is also possible to specify that the i/o files are to be saved un
user supplied names with DAKOTA generated tag extensions, see File saving on page 82 a
File tagging on page 82 for more information.

Just preceding the output of the objective and constraint function values is the line "Active
set vector = { 1 1 1 } ". Theactive set vector is not to be confused with the active
constraint set that is sometimes defined for numerical optimization algorithms. For this cas
active set vector is used for a DAKOTA-to-simulator request, and indicates the type of requ
that has been made to the simulator for the objective and constraint function evaluations. T
first value of1 on this DAKOTA output line indicates that the simulator is to evaluate the
objective function. The remaining values of1 indicate that the simulator is to evaluate the
volume constraint functions. Had a value of0 appeared in any of these positions it would have
been interpreted by the simulator as a do-not-evaluate request for the respective objective
constraint function. The values contained in this active set vector correspond to the numbe
the first character position of the last three lines of the DAKOTA-to-simulator input file descri
in the section titled Constructing the interface on page 23.

Since finite difference gradient computations have been specified DAKOTA computes their
values, in part by automatically making additional function evaluation requests to the simul
Examples of the gradient-related function evaluations have been included in the sample ou
User’s Instructions DAKOTA Introduction - Tutorial 31

heir

es are

ould

ut.
 small

le
beginning with the line that reads ">>>>> Dakota finite difference evaluation
for x[1] + h: ". A sample of the resulting objective and constraint function values and t
gradients is shown following function evaluation5 beginning with the line ">>>>> Total
response returned to iterator: ". Here, another type of active set vector is
displayed in the DAKOTA output file. The line "Active set vector = { 3 3 3 } "
displays a DAKOTA-to-numerical-optimizer active set vector. It indicates the values that
DAKOTA is supplying to the numerical optimizer associated with the objective function and
constraints. The values of3 are composite combinations used to indicate that the results of a
function evaluation,1, and a DAKOTA gradient computation,2, are being supplied to the
numerical optimizer, for each of the objective and constraint functions. The composite valu
computed by simple addition (1+2=3). Some numerical optimizers also request Hessian
information. For this case a code of4 is used. Thus, if the numerical optimizer were being
supplied with function value and Hessian information the active set value would be1+3=4 or if
function value, gradient and Hessian information were being supplied the active set value w
be1+2+3=7, for the associated objective or constraint function.

The final lines of the DAKOTA output, beginning with the line "<<<<< Single method
iteration completed ", summarize the results of the optimization analysis. The best
values of the optimization parameters, objective function, and constraint equations are outp
Since the analysis is approximate the constraint functions are only satisfied to within some
tolerance of zero for this example. The DAKOTA results are followed by a summary of the
NPSOL analysis. A more detailed summary of the NPSOL analysis is contained in either fi
fort.9 or file ftn09 , as specified in the output.

Figure 7 Example DAKOTA output
MPI initialized with 1 processors.
Writing new restart file dakota.rst
Constructing Single Method Strategy...
no method_pointer: last specifications parsed will be used
methodName = npsol_sqp
gradientType = numerical
hessianType = none
Numerical gradients using 0.1% central differences
to be calculated by the dakota finite difference routine.
Optimality Tolerance = 0.0001
NOTE: NPSOL’s convergence tolerance is not a relative tolerance.
 See pp. 21-22 of NPSOL manual for description.
Derivative Level = 3
Running MPI executable in serial mode.
Running Single Method Strategy...

Begin Dakota finite difference routine

>>>>> Initial map for non-finite-differenced portion of response:

Begin Function Evaluation 1

Parameters for function evaluation 1:
 4.5000000000e+00 H
 4.5000000000e+00 D

(container /var/tmp/aaaa0041c /var/tmp/baaa0041c)
Removing /var/tmp/aaaa0041c and /var/tmp/baaa0041c
User’s Instructions DAKOTA Introduction - Tutorial 32

Active response data for function evaluation 1:
Active set vector = { 1 1 1 }
 1.0776762359e+02 obj_fn
 8.0444076396e+00 nln_con1
 -8.0444076396e+00 nln_con2

>>>>> Dakota finite difference evaluation for x[1] + h:

Begin Function Evaluation 2

Parameters for function evaluation 2:
 4.5045000000e+00 H
 4.5000000000e+00 D

(container /var/tmp/caaa0041c /var/tmp/daaa0041c)
Removing /var/tmp/caaa0041c and /var/tmp/daaa0041c

Active response data for function evaluation 2:
Active set vector = { 1 1 1 }
 1.0783442171e+02 obj_fn
 8.1159770472e+00 nln_con1
 -8.1159770472e+00 nln_con2

>>>>> Dakota finite difference evaluation for x[1] - h:

Begin Function Evaluation 3

Parameters for function evaluation 3:
 4.4955000000e+00 H
 4.5000000000e+00 D

(container /var/tmp/eaaa0041c /var/tmp/faaa0041c)
Removing /var/tmp/eaaa0041c and /var/tmp/faaa0041c

Active response data for function evaluation 3:
Active set vector = { 1 1 1 }
 1.0770082548e+02 obj_fn
 7.9728382320e+00 nln_con1
 -7.9728382320e+00 nln_con2

>>>>> Dakota finite difference evaluation for x[2] + h:

Begin Function Evaluation 4

Parameters for function evaluation 4:
 4.5000000000e+00 H
 4.5045000000e+00 D

(container /var/tmp/gaaa0041c /var/tmp/haaa0041c)
Removing /var/tmp/gaaa0041c and /var/tmp/haaa0041c

Active response data for function evaluation 4:
Active set vector = { 1 1 1 }
 1.0791640170e+02 obj_fn
 8.1876180243e+00 nln_con1
 -8.1876180243e+00 nln_con2

>>>>> Dakota finite difference evaluation for x[2] - h:

Begin Function Evaluation 5

Parameters for function evaluation 5:
 4.5000000000e+00 H
 4.4955000000e+00 D
User’s Instructions DAKOTA Introduction - Tutorial 33

(container /var/tmp/iaaa0041c /var/tmp/jaaa0041c)
Removing /var/tmp/iaaa0041c and /var/tmp/jaaa0041c

Active response data for function evaluation 5:
Active set vector = { 1 1 1 }
 1.0761892743e+02 obj_fn
 7.9013403937e+00 nln_con1
 -7.9013403937e+00 nln_con2

>>>>> Total response returned to iterator:

Active set vector = { 3 3 3 }
 1.0776762359e+02 obj_fn
 8.0444076396e+00 nln_con1
 -8.0444076396e+00 nln_con2
 [1.4844025288e+01 3.3052696308e+01] obj_fn gradient
 [1.5904312809e+01 3.1808625618e+01] nln_con1 gradient
 [-1.5904312809e+01 -3.1808625618e+01] nln_con2 gradient

.

.

.

>>>>> Dakota finite difference evaluation for x[2] - h:

Begin Function Evaluation 40

Parameters for function evaluation 40:
 4.9556729812e+00 H
 4.0359108491e+00 D

(container /var/tmp/adaa0041c /var/tmp/bdaa0041c)
Removing /var/tmp/adaa0041c and /var/tmp/bdaa0041c

Active response data for function evaluation 40:
Active set vector = { 1 1 1 }
 9.8930418512e+01 obj_fn
 -1.2698647482e-01 nln_con1
 1.2698647482e-01 nln_con2

>>>>> Total response returned to iterator:

Active set vector = { 3 3 3 }
 9.9062468783e+01 obj_fn
 1.8074075570e-10 nln_con1
 -1.8074075570e-10 nln_con2
 [1.3326473792e+01 3.2694282247e+01] obj_fn gradient
 [1.2818642490e+01 3.1448402789e+01] nln_con1 gradient
 [-1.2818642490e+01 -3.1448402789e+01] nln_con2 gradient

NPSOL exits with INFORM code = 0 (see p. 8 of NPSOL manual)

NOTE: see Fortran device 9 file (fort.9 or ftn09)
 for complete NPSOL iteration history.

<<<<< Single method iteration completed.
<<<<< Function evaluation summary: 40 total (40 new, 0 duplicate)
<<<<< Best design parameters =
 4.9556729812e+00 H
 4.0399507999e+00 D
<<<<< Best objective function =
 9.9062468783e+01
<<<<< Best constraint values =
 1.8074075570e-10
 -1.8074075570e-10
Run time from MPI_Init to MPI_Finalize is 6.0880220000e+00 seconds
User’s Instructions DAKOTA Introduction - Tutorial 34

ing an
 you
seful

ame

sult in
data

ain.
 and
e

re it

e
new
 NPSOL --- Version 4.06-2 Nov 1992
 ==

Maj Mnr Step Fun Merit function Violtn Norm gZ nZ Penalty Conv
 0 3 0.0E+00 1 1.07767624E+02 1.1E+01 1.5E+00 1 0.0E+00 F FF
 1 1 1.0E+00 2 9.95643509E+01 4.2E+00 1.3E+00 1 0.0E+00 F FF
 2 1 1.0E+00 3 9.91019314E+01 6.5E-01 3.8E-01 1 0.0E+00 F TF
 3 1 1.0E+00 4 9.90642035E+01 1.3E-01 9.4E-02 1 0.0E+00 F TF
 4 1 1.0E+00 5 9.90624728E+01 5.2E-03 3.6E-03 1 0.0E+00 T TF
 5 1 1.0E+00 6 9.90624688E+01 6.4E-06 1.8E-04 1 0.0E+00 T TF
 6 1 1.0E+00 7 9.90624688E+01 1.9E-08 4.1E-06 1 0.0E+00 T TF
 7 0 1.0E+00 8 9.90624688E+01 2.6E-10 5.2E-12 1 0.0E+00 T TT

 Exit NPSOL - Optimal solution found.

 Final nonlinear objective value = 99.06247

Some useful features of DAKOTA

DAKOTA has many features that can be used to enhance your problem solving capability,
including ones that can be used to reduce the overall amount of time you could spend runn
analysis. Some of these features are implicit to the DAKOTA input file, since this file allows
to readily change between analysis types, vendor codes, application problems, etc. Other u
time-saving features are also present in DAKOTA. In this section examples of the restart
capability and the parallel processing interface will be discussed.

Restarting DAKOTA

DAKOTA was developed for solving problems that typically require multiple calls to
computationally expensive simulation codes. In some cases you may want to conduct the s
optimization, but to a finer final convergence tolerance. This would be costly if the entire
optimization analysis had to be repeated. Power outages and system failures could also re
costly delays. However, DAKOTA automatically records enough of the input and response
from calls to your simulation code so that a time-inexpensive restart is possible.

As an example of the DAKOTA restart capability, consider the above container example ag
For the sake of this example, pretend that the simulator function evaluations are expensive
that the DAKOTA run unexpectedly aborted after 20 successful iterations. Assuming that th
original DAKOTA analysis was started with the command

dakota -i dakota_container.in

DAKOTA will automatically generate a file nameddakota.rst that contains input and
response information from the aborted run. To instruct DAKOTA to essentially "pick up whe
left off" execute the command

dakota -i dakota_container.in -r -s 20 -w dakota_new.rst

This command tells DAKOTA to recover the results of the first twenty simulator calls from th
restart file and then proceed with the analysis by making simulator calls as usual, writing the
User’s Instructions DAKOTA Introduction - Tutorial 35

an
r

n
nally

ration

en
t
f a
 time
 fewer

lator
o
ed in
tion

d
ing
cribed
ed

wed
n in

cient
nt

of the

e
onal
restart filedakota_new.rst . A more in depth discussion of the restart capability with
additional features is given in Restart Management on page 125.

The parallel interface

If you have more than one processor available, such as a cluster of network-connected
workstations or a multi-processor, then the solution time required for a DAKOTA analysis c
often be substantially reduced through use of parallel distributed processing techniques. Fo
many of the optimization and other methods supported by DAKOTA, parallel processing ca
dramatically reduce analysis times when the simulator function evaluations are computatio
expensive. The reason behind this is that many of these methods contain at least some
independent calls to the simulator which can be distributed between processors on every ite
step. If a given method hasn independent simulator calls at every iteration step then the
DAKOTA analysis speed can be increased by as much as a factor ofn by running multiple
instances of the simulator, one on each processor. For maximum speed increase, it has be
assumed that at leastn processors are available to DAKOTA for simulator evaluations and tha
the computation time for an individual simulator call is suitably high (typically on the order o
few seconds or less for modern workstation clusters) so that interprocessor communication
is a negligible in comparison. Performance increases can still be obtained for systems with
thann processors.

DAKOTA has been developed with parallel processing capabilities built into its framework.
Thus, if you have a new or existing application that could benefit from making parallel simu
calls, DAKOTA allows you to exploit parallelism with the addition of only a few commands t
the dakota input file and some minor changes to the command line. DAKOTA can also be us
conjunction with simulators that have their own parallel capabilities. For a complete descrip
of the parallel capabilities associated with DAKOTA see Exploiting Parallelism on page 99.

This section will explain where parallelism is exploited in typical optimization algorithms an
show how to set up and run a simple DAKOTA optimization analysis using parallel process
techniques. It is assumed that DAKOTA has been configured with the MPI package as des
in Configuring with the Message Passing Interface on page 184. Here, the previously defin
container optimization example will be extended to allow parallel processing of the finite
difference gradient computations. For further examples of incorporating parallelism into a
DAKOTA analysis see Specifying Parallelism on page 107.

Gradient based local optimization algorithms typically consist of an initialization phase follo
by an iterative phase, where each iteration consists of: the computation of a search directio
the multi-dimensional parameter space, a search along the established direction for a suffi
decrease in the objective function (subject to any constraints that may be present), a gradie
computation, an update to a matrix approximating the second partial derivatives (Hessian)
constrained objective, and a convergence check. There are many opportunities to exploit
parallelism in this type of algorithm. However, not all these opportunities would turn out to b
productive in light of the fact that the simulator calls usually dominate the overall computati
effort.
User’s Instructions DAKOTA Introduction - Tutorial 36

 from

. This
at

is

ion
e and
of
asons,
an

ltiple
is
ps
ted.
 line
, the

jective
tral
lated
ator

tion

tput

llel
e for

nished
e,
tes
stem
pe
ed
The search direction computation is based on the Hessian approximation and the gradient
the previous iteration or from the initialization phase. The objective and constraint function
values, gradients, and the Hessian approximation are used to compute the search direction
direction points to the minimum value of the current estimate of the optimization problem th
satisfies the constraints. This subproblem is only an approximation to the actual nonlinear
optimization problem, and thus, the overall optimization algorithm must proceed iterative
manner to a solution. The search direction computation is based on linear algebra and the
computational effort expended is usually very small in comparison to the simulator calls. Th
conclusion also holds true for other parts of the optimization algorithm algebra, such as the
update to the Hessian approximation. The use of parallel processing to solve the optimizat
algebra is not typically advantageous unless the number of optimization parameters is hug
the simulator function evaluations are relatively inexpensive. The development of this type
parallelism is also strongly tied to the internal data structures of the optimizer. For these re
this form of parallelism is not directly supported by DAKOTA. However, it is possible to link
optimizer with these capabilities to DAKOTA should the need arise.

The part of the problem where it is advantageous to utilize parallel processing is where mu
calls to the simulator evaluator can be made in parallel. For gradient-based optimization, th
opportunity occurs during the line search and gradient computation steps. During these ste
both function and gradient information for the constraint and objective functions are compu
For some types of line search, the gradient is computed directly after the completion of the
search. For other cases it is an integral part of the line search. For either type of line search
gradient information can be computed on additional processors at the same time as the ob
and constraint function values are computed. For the container optimization example if cen
finite differences are used in the gradient computations, then an additional four gradient-re
simulator evaluations can be performed on four additional processors. For expensive simul
evaluations, this would result in a maximum speed increase of a factor of five.

Enabling parallel optimization capabilities in DAKOTA is quite easy. The container optimiza
problem will be used as an example. While the container simulator function calls are quite
inexpensive in actuality, it is used here for the sake of example. The general set up for a
simulator with expensive function evaluations would follow along the same lines and the ou
obtained would be much the same.

No changes are necessary between the DAKOTA to interface input code for serial and para
analyses. Some minor changes may be necessary for the interface to DAKOTA output cod
the parallel analysis. The reason for this is that the current version of DAKOTA operating in
parallel mode polls for the existence of the interface-to-DAKOTA output file and once its
existence is detected a read attempt is made. However, it may be that the interface is not fi
writing this file and therefore the read attempt will fail. This condition can occur, for exampl
when there is a large amount of output, when a computationally expensive interface alterna
between calculation and output operations, or when there are write delays due to heavy sy
loading. DAKOTA has the capability to recover from up to ten failed read attempts of this ty
on any interface-to-DAKOTA input file, but the potential for this condition can often be avoid
User’s Instructions DAKOTA Introduction - Tutorial 37

 used
en
ame
on

en so
at

g

ould
e to

 to

C or
entirely by making some simple changes to the simulator output procedures. The approach
here is to write the simulator to DAKOTA output to a uniquely named temporary file, and wh
all the output has been written and this file has been closed, move or rename it to the file n
stored inoutfile . Other possibilities exist, and are discussed in System call synchronizati
on page 101.

The temporary file name can be generated in a variety of ways. However, care must be tak
that each simulator that is in operation uses a different name. For the container example, th
would require having five different file names on each iteration. One approach to generatin
unique file names would be to add one or more characters to the name stored inoutfile .
However, although such an occurrence would be unlikely, there is no guarantee that this w
produce file names that are not already in use somewhere else. Another approach would b
obtain a unique file name using scratch files in Fortran or from the C-library functiontmpnam in
C or C++.

For the Fortran version theopen statement the listing in Figure 3 is replaced by

 open(11,STATUS=’SCRATCH’)
 inquire(11,NAME=tmpfile)

where tmpfile is a character variable of the appropriate dimension. Write the output data
this file and replace theclose statement inFigure 3 with

 close(unit=11,STATUS=’KEEP’)

Thetmpfile is moved tooutfile with the statements

 sysvar = "mv " // tmpfile // " " // outfile
 call system(sysvar)$DAKOTA/test/container_p.f

The code for the parallel version is located in filecontainer_p.f in the$DAKOTA/test/
directory. This version is not compatible with silicon graphics platforms, which do not allow
closing a scratch file withSTATUS=’KEEP’ . For this case an alternative mixed language
version that callstmpnam is located in filescontainer_p2.f andtempnm.c. To
compile the Fortran versioncontainer_p.f you will need to enter something like

f77 -o container_p container_p.f

or for the mixed language version
cc -c tempnm.c
f77 -o container_p container_p2.f tempnm.o

For the C and C++ versions a temporary file name is obtained with the function call
tmpnam(tmpfile);

The filetmpfile is opened, response data is written, and it is closed according to standard
C++ conventions. The file is then moved tooutfile using a system function call. The C and
C++ versions are stored in filescontainer_p.c andcontainer_p.C in the$DAKOTA/
User’s Instructions DAKOTA Introduction - Tutorial 38

al C

n the
n be
xecute
ccur

ion of
o, if

e race

he

n

test/ directory, respectively. To compile use commands similar to those given for the seri
and C++ versions.

These files are the same as the serial versions, with exception to the changes discussed. I
event that the simulator code is not directly accessible, the 3-piece Interface on page 81 ca
used to incorporate the above file renaming strategy. It should be noted for problems that e
as fast as the container example, it is unlikely that a failure due to the race condition would o
in actuality. However, in any problem where significant delays can occur between the creat
the interface-to-DAKOTA response file and its completion, such a strategy is necessary. Als
the simulator is compiled for use in a multi-thread environment then thesystem call in the
Fortran version and the C call totmpnam may not be suitable on some platforms unless re-
entrant versions are available. For this case some other method should be used to avoid th
condition or the 3-piece interface could be used. For other approaches to avoiding the race
condition see the discussion in System call synchronization on page 101.

If the parallel container optimization example is to be run on a cluster of network-connected
workstations in master-slave mode under MPI, then only a few changes are necessary to t
DAKOTA input file dakota_container.in in Figure 6. The name of the analysis driver in
the interface specification must be set tocontainer_p , the name of the parallel simulator
executable. The commandparallel_library mpi must be set in the strategy specificatio
to request MPI as the parallel communication handler, andevaluations asynchronous
must be set in the method specification to enable distributed parallel computation of the
simulator function evaluations. These changes are shown in Figure 8 and are stored in file
dakota_container_p.in .

Figure 8 DAKOTA input file for the parallel container optimization
example.

Interface specification
 interface, \
 application, system \
 analysis_driver = ’container_p’

Variables specification
 variables, \
 continuous_design = 2 \
 cdv_descriptor ’H’ ’D’ \
 cdv_initial_point 4.5 4.5 \
 cdv_lower_bounds 0.0 0.0

Strategy specification
 strategy, \
 single_method \
 parallel_library mpi

Method specification
 method, \
 npsol_sqp \
 evaluations asynchronous

Responses speification
 responses, \
 num_objective_functions = 1 \
 num_nonlinear_constraints = 2 \
 numerical_gradients \
 method_source dakota \
 interval_type central \
User’s Instructions DAKOTA Introduction - Tutorial 39

file
 used
and

read

es

shell

on a

tailed
tran
s the

 over
g as the
ulator
 fd_step_size = 0.001 \
 no_hessians

Another possibility for the avoidance of the file read race condition makes use of DAKOTA
File tagging on page 82 and UNIX shell scripting. For this approach, tagged file names are
in to eliminate write conflicts when multiple instances of the interface are running in parallel,
in the naming of temporary working directories. Shell scripts are used to actually create
temporary working directories for individual instances of the interface, which eliminates the
race condition. File tagging is enabled by adding the commands

parameters_file= ’container.in’\
results_file= ’container.out’\
file_tag\

under theinterface specification in Figure 8, and the analysis driver specification becom
analysis_driver = ’container.script’\

One of the serial container executables listed in Figure 3 through Figure 5 is used with the
scripting approach. The shell script file listing is given in Figure 9.

Figure 9 UNIX shell script file for parallel DAKOTA.
#! /bin/csh -f
$argv[1] is container.in.(fn_eval_num) FROM Dakota
$argv[2] is container.out.(fn_eval_num) returned to Dakota

create a unique temporary directory using $argv[1]
set num = ‘echo $argv[1] | cut -c 14-‘
mkdir workdir.$num

#make workdir.$argv[1] the current working directory
cp $argv[1] workdir.$num
cd workdir.$num

#run the container optimization interface from workdir.$argv[1]
../container $argv[1] $argv[2]

#move the completed output file to the dakota working directory
mv $argv[2] ../.

#remove the temporary working directory
cd ..
rm -rf workdir.$num

The shell script is store in filecontainer.script the DAKOTA input file for stored in file
dakota_container_pss.in in the$DAKOTA/test directory. Other parallel interface
possibilities exist within DAKOTA, see Implementation of Parallelism on page 104.

To execute DAKOTA in parallel mode it must be run within the proper environment. To run
workstation cluster under MPI, for example, you might enter the command

mpirun -np 5 dakota -i dakota_container.in > dakota_out

The exact command would depend on how MPI is installed on your system. For a more de
discussion see Running a parallel DAKOTA job on page 110. The output results for the For
version ofcontainer_p are shown in Figure 10. The parallel results are much the same a
serial results. The output file contains several lines indicating that DAKOTA is being run in a
master-slave parallel mode and that the simulator function evaluations are being distributed
the slave servers. For this example a total of six processors are used. One processor actin
master runs DAKOTA, and the remaining processors act as slave servers by conducting sim
User’s Instructions DAKOTA Introduction - Tutorial 40

le
t in
evaluations when a request is made. If the number of processors is limited it is also possib
instruct MPI to use one of the processors as both a master and slave. Since DAKOTA is no
itself computationally expensive the processor can be shared between DAKOTA and the
simulator function evaluation without much performance loss.

Figure 10 Sample output results for a parallel DAKOTA run
MPI initialized with 6 processors.
Writing new restart file dakota.rst
Constructing Single Method Strategy...
no method_pointer: last specifications parsed will be used
methodName = npsol_sqp
gradientType = numerical
hessianType = none
Numerical gradients using 0.1% central differences
to be calculated by the dakota finite difference routine.
Optimality Tolerance = 0.0001
NOTE: NPSOL’s convergence tolerance is not a relative tolerance.
 See pp. 21-22 of NPSOL manual for description.
Derivative Level = 3
Running MPI executable in parallel master-slave mode.
numSlaveServers = 5 procsPerAnalysis = 1 procRemainder = 0 parallelismLevel = 1
Running Single Method Strategy...

Begin Dakota finite difference routine

>>>>> Initial map for non-finite-differenced portion of response:

Begin Function Evaluation 1

Parameters for function evaluation 1:
 4.5000000000e+00 H
 4.5000000000e+00 D

(Parallel job 1 added to message passing queue)

>>>>> Dakota finite difference evaluation for x[1] + h:

Begin Function Evaluation 2

Parameters for function evaluation 2:
 4.5045000000e+00 H
 4.5000000000e+00 D

(Parallel job 2 added to message passing queue)

.

.

.

>>>>> Dakota finite difference evaluation for x[2] - h:

Begin Function Evaluation 5

Parameters for function evaluation 5:
 4.5000000000e+00 H
 4.4955000000e+00 D

(Parallel job 5 added to message passing queue)

Synchronizing 5 asynchronous evaluations.
First pass: num_sends = 5
User’s Instructions DAKOTA Introduction - Tutorial 41

sm.
t due
rlo,

alls in
d is
Master assigning fn. evaluation 1 to server 1
Master assigning fn. evaluation 2 to server 2
Master assigning fn. evaluation 3 to server 3
Master assigning fn. evaluation 4 to server 4
Master assigning fn. evaluation 5 to server 5
Waiting on all jobs.

Active response data for function evaluation 1:
Active set vector = { 1 1 1 }
 1.0776762359e+02 obj_fn
 8.0444076396e+00 nln_con1
 -8.0444076396e+00 nln_con2

Active response data for function evaluation 2:
Active set vector = { 1 1 1 }
 1.0783442171e+02 obj_fn
 8.1159770472e+00 nln_con1
 -8.1159770472e+00 nln_con2

.

.

.
Begin Function Evaluation 40

Parameters for function evaluation 40:
 4.9556729812e+00 H
 4.0359108491e+00 D

(Parallel job 40 added to message passing queue)

Synchronizing 5 asynchronous evaluations.
First pass: num_sends = 5
Master assigning fn. evaluation 36 to server 1
Master assigning fn. evaluation 37 to server 2
Master assigning fn. evaluation 38 to server 3
Master assigning fn. evaluation 39 to server 4
Master assigning fn. evaluation 40 to server 5
Waiting on all jobs.

Active response data for function evaluation 36:
Active set vector = { 1 1 1 }
 9.9062468783e+01 obj_fn
 1.8074075570e-10 nln_con1
 -1.8074075570e-10 nln_con2
.
.
.

Gradient-based optimization is only one type of DAKOTA analysis that lends well to paralleli
Many of the other methods supported by DAKOTA also can be run in a parallel environmen
to the independence of multiple function evaluations inherent in their design. The Monte Ca
coordinated pattern search, and genetic algorithms of SGOPT are further examples where
substantial speed increases can be obtained in a parallel environment for computationally
expensive simulator evaluations, due to the existence of independent function evaluation c
each algorithm. A complete list of DAKOTA methods for which parallel analysis can be use
given in Specifying Parallelism on page 107.
User’s Instructions DAKOTA Introduction - Tutorial 42

ents,
dules

o use
 and
d
e

s,
n or
me

ociated

 of

er

tion
Decision Tables for DAKOTA Methods and Strategies

DAKOTA provides easy access to a large number of methods and strategies of varying
capabilities. These individual methods and strategies can be looked at as modular compon
any one of which may be applied in an overall analysis. As a combined resource, these mo
can be used to solve a wide range of individual problem types. Knowing when and where t
particular methods and/or strategies will enhance the power and performance of DAKOTA,
give you a greater level of insight into your analysis. This section will be primarily concerne
with the classification of optimization methods and strategies that are part of DAKOTA sinc
they are many and varied. Nondeterministic methods and parameter studies will also be
discussed.

Optimization algorithms can be categorized by several different means of classification,
according to the uses for which they were designed. Whether the optimizer is for continuou
discrete, or mixed parameters; is unconstrained or constrained; has a single optimal solutio
multiple possibilities; or has smooth or nonsmooth objective and constraint functions are so
examples. As a first pass, several general types of classifications will be given and the ass
methods will be categorized in tabular form.

The types of constraints that an optimization algorithm is designed to handle is one means
classification. Optimization algortihms are typically designed for use on problems without
constraints (unconstrained optimizers), or designed so that they can handle upper and low
bound constraints on the optimization parameters, linear constraint functions, or nonlinear
constraint functions. Categorization of the DAKOTA methods under the constraint classifica
is given in Table 1.
User’s Instructions DAKOTA Introduction - Decision Tables for DAKOTA Methods and Strategies 43

d
.
ation
thods
flected
Table 1 Constraints

Constrained optimization algorithms are often designed as generalizations of unconstraine
methods. This concept also holds between the different types of constrained optimizers, i.e
nonlinearly constrained is often a generalization of linearly constrained, which is a generaliz
of bound constrained. Thus, little or no performance loss would be observed for similar me
when a constrained version is applied to an unconstrained problem, etc. This concept is re

Constraints Applicable Methods

unconstrained optpp_cg, optpp_fd_newton,
optpp_g_newton,
optpp_newton,
optpp_q_newton, most sgopt
methods

bound constrained dot_bfgs, dot_frcg,
optpp_baq_newton,
optpp_bc_elipsoid,
optpp_bc_newton,
optpp_bcg_newton,
optpp_bcq_newton,
sgopt_pga_real,
sgopt_coord_ps

linearly constrained special handling with
npsol_sqp; otherwise any
nonlinearly constrained method

nonlinearly
constrained

npsol_sqp, dot_mmfd, dot_slp,
dot_sqp
User’s Instructions DAKOTA Introduction - Decision Tables for DAKOTA Methods and Strategies 44

raint

cation.
valent
re
in Figure 11 where each generalization of the constraint type encompasses previous const
types. This type of performance is particularly true of the gradient-based optimizers.

Figure 11 Generalizations of optimizer constraint handling capabilities.

The type of variable that an optimization code can operate on is another method of classifi
Optimization codes designed to handle continuous or real-valued variables are the most pre
in DAKOTA. Optimization codes that accept integer or a mix of real and integer variables a
also accessible from DAKOTA, as well as codes that accept continuous nondeterministic
variables. Table 2 categorizes the DAKOTA methods under the variables classification.

Unconstrained problems:

selected
OPT++,
SGOPT methods

Nonlinearly constrained problems:

constrained DOT, NPSOL

Bound constrained problems:

selected DOT and OPT++ methods
User’s Instructions DAKOTA Introduction - Decision Tables for DAKOTA Methods and Strategies 45

l

s

 that

s, it
TA

n

ter
ee

r

Table 2 Variables

Optimization problems involving minimization of strictly convex (i.e. bowl shaped) objective
functions that are either unconstrained or have linear constraints have at most a single loca
optimal solution. However, minimization problems involving nonlinear constraints and/or
nonconvex objective functions may have multiple local optimal solutions. Similar conclusion
can be drawn for maximization problems. Algorithms that are designed to solve local
optimization problems are typically much more efficient in terms of analysis time than ones
apply to global optimization problems, because they usually require vastly fewer function
evaluations. However, it is often unknown whether the problem is global or local a priori. Thu
is often necessary to apply a less efficient global optimization algorithm. The available DAKO
methods are categorized as global or local in Table 3.

A procedure for determining whether a problem is best suited for global or local optimizatio
can be somewhat of an art form. If the objective and constraint functions are not known
analytically, then it is unlikely that it will be possible to make a judgement without further
information. In some cases it may be desirable to combine global and local optimizers in a
hybrid strategy in order to exploit the respective advantages of each, or to make some
preliminary assessment of the objective and constraint function behaviors over the parame
space. DAKOTA provides methods and strategies for performing these types of analyses. S
Multilevel Hybrid Optimization on page 71 and Parameter Study Capabilities on page 62 fo
more details.

Variables Applicable Methods

continuous DOT, NPSOL, and OPT++
methods, sao, sgopt_coord_ps,
sgopt_coord_sps,
sgopt_solis_wets,
sgopt_pga_real, sgopt_strat_mc

discrete sgopt_pga_int

mixed sgopt_pga_mixed,
branch_and_bound
User’s Instructions DAKOTA Introduction - Decision Tables for DAKOTA Methods and Strategies 46

times
mooth.

uous
 is
ds
tiates
 to

prise
ially

nction
ded for

the
and if

, is

. As a
he
 in
jective
ations

lly
ld be
in
Table 3 Local vs. global

Optimization algorithms that have been designed to operate on smooth functions can some
suffer severe performance losses if the problems that they are applied to are actually nons
Table 4 categorizes DAKOTA methods as being suitable for either smooth or nonsmooth
analysis. The term smooth is often used to describe functions that have theoretically contin
gradient and Hessian information. It can be noted that by this definition, numerical analysis
nonsmooth whenever finite precision arithmetic is used. However, in practice all the metho
employed by DAKOTA can tolerate at least some degree of nonsmoothness. What differen
between the categories of smooth and nonsmooth here is whether or not they are immune
relatively high levels of nonsmoothness.

Gradient based methods cannot tolerate high levels of nonsmoothness, and thus they com
the smooth optimization category. Limiting their use to relatively smooth functions is espec
important when finite differencing is used to compute the gradients. However, if the
nonsmoothness is small in comparison to changes that can be observed in the objective fu
over some parameter range, then they may be suitable for use. For this case methods inten
smooth optimization could provide a relatively fast means of obtaining large improvements in
objective function value. However, convergence to an optimal point can not be guaranteed,
finite differencing were employed a relatively large step size would be needed.

Determining when a smooth method is acceptable for use on a given optimization problem
again, somewhat of an art form. It may be necessary to gain insight into the level of
nonsmoothness present through use of DAKOTA’s Parameter Study Capabilities on page 62
rule of thumb, the finite difference step size should be set so that level nonsmoothness in t
neighborhood initial point is no more than ~10% of the net change in the objective function
the same neighborhood. It should also be apparent that the net observed change in the ob
function is a large scale change, rather than some form of local waviness. Similar consider
should be made for the constraint functions. A close observation of the optimization results
usually reveals that much more work is being performed in the line search part of the
optimization algorithm for nonsmooth problems. However, the total work performed is usua
much less for than would be observed for a nonsmooth optimization code. This analysis cou
followed up by one or more of the nonsmooth optimization methods if further improvement
the objective function is needed.

Solution Type Applicable Methods

local DOT, NPSOL, and OPT++
methods (except optpp_pds),
sao, sgopt_coord_ps,
sgopt_coord_sps,
sgopt_solis_wets

global optpp_pds, sgopt_pga_real,
sgopt_pga_int, sgopt_strat_mc
User’s Instructions DAKOTA Introduction - Decision Tables for DAKOTA Methods and Strategies 47

hine,

-
ons
t
le 5
some
 the
ient
ll

es,
s the
Table 4 Smooth vs. nonsmooth

If you have access to a cluster of network-connected workstations or a multiprocessor mac
then you can exploit parallelism in the execution of your optimization problem to reduce the
overall analysis time. Given that the function evaluations are expensive, algorithmic coarse
grained parallelism can be exploited in cases where multiple independent function evaluati
are made by the optimization code. All the methods supported by DAKOTA support at leas
some algorithmic coarse grained parallelism in one or more specific operating modes. Tab
categorizes the algorithms. The gradient-based optimizers support speculative analysis in
modes. For this method DAKOTA speculates that gradient information will be requested by
optimization algorithm soon after a function evaluation request is made. By computing grad
information in parallel, at the same time as the function evaluation, a reduction in the overa
analysis time is achieved. However, the gradient information may not be used by the
optimization program on every iteration. A more general form of parallelism is supported by
some of the gradient-based and all the other types of optimization programs. For these cod
multiple independent function evaluations are always requested on every iteration, and thu
speculative nature is not present.

Function
Surface

Applicable Methods

smooth gradient-based: DOT, NPSOL,
OPT++ methods (except
optpp_pds)

nonsmooth optpp_pds, sao,
sgopt_coord_ps,
sgopt_coord_sps,
sgopt_solis_wets,
sgopt_pga_int, sgopt_pga_real,
sgopt_strat_mc
User’s Instructions DAKOTA Introduction - Decision Tables for DAKOTA Methods and Strategies 48

ns
el

 on
n if
Table 5 Algorithmic parallelism

Other classifications are also important. For instance, when function evaluations become
extremely expensive, methods that typically require tens of thousands of function evaluatio
such as genetic algorithms or Monte Carlo analysis must be ruled out unless a large parall
machine is available. The number of optimization parameters can also be a factor. For
nongradient-based methods, the probability of finding an improved objective function value
the next iteration step falls off quickly as the problem dimension increases. This is true eve
the number of processors is scaled with the problem dimension.

Table 6 summarizes the previous classifications. Blank entries in a given column inherit the
category from the previous row.

Parallelism Applicable Methods

Serial standard DOT, NPSOL, and
OPT++ methods using analytic
and vendor numerical gradients

Parallel DOT, NPSOL, and OPT++
methods using DAKOTA
numerical gradients, optpp_pds,
SGOPT methods
User’s Instructions DAKOTA Introduction - Decision Tables for DAKOTA Methods and Strategies 49

have
alysis,

on,

ton

p,

at_mc

al)

g

Table 6 All inclusive summary

DAKOTA supports interfacing with a number of methods that are not directly used for
optimization, and several strategies that incorporate optimization methods. Some of these
already been mentioned. These additional capabilities are divided into nondeterministic an
parameter study, and optimization strategy categories in Table 7.

Variable
Type

Function
Surface

Solution
Type

Constraints Applicable Methods

continuous smooth local unconstrained optpp_cg, optpp_fd_newt
optpp_g_newton,
optpp_newton, optpp_q_new

bound constrained dot_bfgs, dot_frcg,
optpp_baq_newton,
optpp_bc_elipsoid,
optpp_bc_newton,
optpp_bcg_newton,
optpp_bcq_newton

nonlinearly
constrained

npsol_sqp, dot_mmfd, dot_sl
dot_sqp

nonsmooth local bound constrained sgopt_coord_ps,
sgopt_coord_sps,
sgopt_solis_wets

dependent on
underlying
optimizer

sao

global bound constrained sgopt_pga_real, sgopt_str

nonlinearly
constrained

(coming soon: sgopt_pga_re

discrete n/a global bound constrained sgopt_pga_int

mixed smooth local nonlinearly
constrained

branch_and_bound

nonsmooth global bound constrained sgopt_pga_mixed, (comin
soon: sgopt_pga_mixed)
User’s Instructions DAKOTA Introduction - Decision Tables for DAKOTA Methods and Strategies 50

Table 7 Other method and strategy classifications

General
classification

Applicable Methods

nondeterministic nond_probability, nond_mean_value

parameter study centered_parameter_study,
list_parameter_study,
multidim_parameter_study,
vector_parameter_study

strategies branch_and_bound, multi_level, ouu,
sao
User’s Instructions DAKOTA Introduction - Decision Tables for DAKOTA Methods and Strategies 51

n,

tigate
ntrols,

r
ility of
 of
3) is
se
tors

ods,
+
ional
age
 on
Capability Introduction
Iterator and Strategy Hierarchies on page 52

Iterator and Strategy Hierarchies

Figure 12 Iterator and Strategy Hierarchies

The DAKOTA system is designed to accommodate optimization, nondeterministic simulatio
nonlinear least squares, and parameter study methods in its “iterator” hierarchy. These
capabilities often complement each other in a project: (1) a parameter study is used to inves
local design space issues in order to help select the appropriate optimizer and optimizer co
(2) optimization is used to find a best design, and (3) nondeterministic simulation is used to
assess the affects of parameter uncertainty on the performance of the optimal design. Othe
classes of iterator methods may be added as they are envisioned, which “leverages” the ut
the interface developments. For example, software effort in coordinating multiple instances
parallel simulations on a massively parallel computer (see Multilevel parallelism on page 10
reusable among all of the iterators in the DAKOTA system. The inheritance hierarchy of the
iterators is shown in Figure 12. Inheritance enables direct hierarchical classification of itera
and exploits their commonality by limiting the individual coding which must be done to only
those features which make each iterator unique.

The iterator hierarchy is currently divided into four branches: the optimizer branch contains
optimization algorithms from the DOT, NPSOL, OPT++, and SGOPT libraries, the
nondeterministic branch implements Mean Value and Monte Carlo sampling (MCarlo) meth
the least squares branch incorporates a Gauss-Newton method (GNewton) from the OPT+
library, and the parameter study branch implements vector, list, centered, and multidimens
parameter study methods. Refer to the overviews describing Optimization Capabilities on p
54, Uncertainty Assessment Capabilities on page 58, Nonlinear Least Squares Capabilities

Iterator

OptimizerParameter Study Nondeterministic

Multilevel

SGOPTNPSOLDOT OPT++

SeqApprox

MCarlo

Least Squares

GNewton

Approx.
Interface

NonDOpt

MultiDVector

Branch&Bound

Strategy

MeanValue
List Centered
User’s Instructions Capability Introduction - Iterator and Strategy Hierarchies 52

tor
tion.

le
e
nd
ge the
(see
in
quent

del

ss.

on

e 150
page 60, and Parameter Study Capabilities on page 62 for more information on these itera
branches, and refer to Method Commands on page 156 for information on iterator specifica

The strategy class hierarchy implements a variety of advanced approaches in which multip
iterators from the iterator hierarchy can be instantiated and bound to multiple models. Thes
strategies coordinate multiple levels of iteration, monitor performance, and adapt iterators a
models (switch/refine control) based on observed performance. In addition, strategies mana
distribution of tasks between the master and slave processors in implementing parallelism
Exploiting Parallelism on page 99). The multilevel hybrid strategy uses multiple optimizers
succession with the best point from one iterator being used as the starting point for a subse
iterator. The single method strategy (not shown) invokes a single iterator using a single mo
and can be viewed as a strategy layer bypass. The branch and bound strategy is under
development for solution of mixed continuous/discrete applications. The optimization under
uncertainty strategy incorporates an uncertainty quantification within the optimization proce
And, in the sequential approximate optimization strategy, an optimizer is interfaced with an
approximate design space representation from the hierarchy described in The Approximati
Interface on page 95. Refer to the overview of Strategy Capabilities on page 70 for more
information on strategy concepts and procedures, and refer to Strategy Commands on pag
for information on strategy specification.
User’s Instructions Capability Introduction - Iterator and Strategy Hierarchies 53

the
t
d

ith
matrix
these

e
e

ign

d
ry

mong
sion
e
tors
Optimization Capabilities
Introduction on page 54DOT Library on page 54NPSOL Library on page 55OPT++ Library on page 55SGOPT Library on page 56

Introduction

Optimization methods in the DAKOTA system involve the manipulation of objective and
constraint functions and potentially their gradient vectors and Hessian matrices. Currently,
number of objective functions must be1, since multi-objective optimization formulations are no
yet explicitly supported. Thus them functions in the DAKOTA response data set are interprete
as1 objective function andm-1 constraint functions within the DAKOTA optimizer hierarchy.

Some optimizers (e.g., NPSOL) have the ability to distinguish constraints which are linear w
respect to the design variables from those which are nonlinear. In the linear case, a single
containing the coefficients of the linear constraint terms is sufficient to define the values of
constraints for all parameter sets. By providing this matrix to an optimizer which supports
special handling of linear constraints, it becomes unnecessary for the user to evaluate thes
constraints on every function evaluation since the optimizer will evaluate them internally (se
[Gill, P.E., Murray, W., Saunders, M.A., and Wright, M.H., 1986]). However, since most
engineering applications involve nonlinear contraints which are implicit functions of the des
variables, a mechanism for specification of this linear constraint matrix has not yet been
developed within DAKOTA. That is, special handling of linear constraints is not yet supporte
and linear constraints should be treated as general nonlinear constraints (evaluated on eve
function evaluation).

In DAKOTA, all nonlinear constraints are inequality constraints of the form gi(X) ≤ 0. Therefore,

constraints of the form c(X)≥ 0 must be converted to the form -c(X)≤ 0. Furthermore, each
equality constraint h(X)= 0 must be implemented by two oppositely signed inequality
constraints: h(X)≤ 0 and -h(X)≤ 0.

When gradient and/or Hessian information is used in the optimization, it is assumed that
derivative components will be computed only with respect to thecontinuous design variables.
The omission of discrete variables from gradient vectors and Hessian matrices is common a
all iterators (since derivatives with respect to discrete variables do not exist); however, inclu
of only the continuous design variables differs from parameter study iterators (which assum
derivatives with respect to all continuous variables) and from nondeterministic analysis itera
(which assume derivatives with respect to the uncertain variables).

DOT Library

The DOT library [Vanderplaats Research and Development, 1995] contains nonlinear
programming optimizers, specifically the Broyden-Fletcher-Goldfarb-Shanno (DAKOTA’s
dot_bfgs method) and Fletcher-Reeves conjugate gradient (DAKOTA’sdot_frcg method)
methods for unconstrained optimization, and the modified method of feasible directions
User’s Instructions Optimization Capabilities - Introduction 54

n

ence
t

s a

um
.
age

ence
rch

tput

 for

TA’s
(DAKOTA’s dot_mmfd method), sequential linear programming (DAKOTA’sdot_slp
method), and sequential quadratic programming (DAKOTA’sdot_sqp method) methods for
constrained optimization.

All DOT methods are local gradient-based optimizers which are best suited for efficient
navigation to a local minimum in the vicinity of the initial point. Global optima in nonconvex
design spaces may be missed. Other gradient based optimizers for constrained optimizatio
include the NPSOL Library on page 55.

DAKOTA controls the maximum number of iterations and function evaluations, the converg
tolerance, the output verbosity, and the optimization type for the DOT methods from its inpu
specification. See DOT Methods on page 161 for additional details on DOT method
specifications.

NPSOL Library

The NPSOL library [Gill, P.E., Murray, W., Saunders, M.A., and Wright, M.H., 1986] contain
sequential quadratic programming (SQP) implementation (DAKOTA’snpsol_sqp method).
SQP is a nonlinear programming optimizer for constrained minimization.

NPSOL’s local gradient-based optimizer is best suited for efficient navigation to a local minim
in the vicinity of the initial point. Global optima in nonconvex design spaces may be missed
Other gradient based optimizers for constrained optimization include the DOT Library on p
54.

DAKOTA controls the maximum number of iterations and function evaluations, the converg
tolerance, the output verbosity, the verification level, the function precision, and the line sea
tolerance for NPSOL from its input specification. See NPSOL Method on page 162 for
additional details on NPSOL specifications.

The NPSOL library generates diagnostics in addition to those appearing in the DAKOTA ou
stream. These diagnostics are written to the default FORTRAN device 9 file (e.g.,fort.9 on
the Sun Solaris architecture) in the working directory.

OPT++ Library

The OPT++ library [Meza, J.C., 1994] contains primarily nonlinear programming optimizers
unconstrained minimization: Polak-Ribiere conjugate gradient (DAKOTA’soptpp_cg method),
quasi-Newton, barrier function quasi-Newton, and bound constrained quasi-Newton (DAKO
optpp_q_newton , optpp_baq_newton , andoptpp_bcq_newton methods), Gauss-
Newton and bound constrained Gauss-Newton (DAKOTA’soptpp_g_newton and
optpp_bcg_newton methods - part of DAKOTA’s nonlinear least squares branch), full
Newton, barrier function full Newton, and bound constrained full Newton (DAKOTA’s
User’s Instructions Optimization Capabilities - NPSOL Library 55

nt-

n
global

ble
nd
nt-
n
age 61.

tput
or
 for

tput

of

rch,
hich
s

ying
n of

akes

o
gh
optpp_newton , optpp_ba_newton , andoptpp_bc_newton methods), finite difference
Newton (DAKOTA’soptpp_fd_newton method), and bound constrained ellipsoid
(DAKOTA’s optpp_bc_ellipsoid method). The library also contains the PDS nongradie
based method (parallel direct search [Dennis, J.E., and Torczon, V.J., 1994], specified as
DAKOTA’s optpp_pds method), and an input place holder for new algorithm testing
(DAKOTA’s optpp_test_new method).

OPT++’s gradient-based optimizers are best suited for efficient navigation to a local
unconstrained minimum in the vicinity of the initial point. Global optima in nonconvex desig
spaces may be missed. OPT++’s PDS method does not use gradients and has some limited
identification abilities; it is best suited for problems for which gradient information is unavaila
or is of questionable accuracy due to numerical noise. Some OPT++ methods support bou
constraints, but none currently support general linear and nonlinear constraints. For gradie
based optimization with constraints, the DOT Library on page 54 and the NPSOL Library o
page 55 should be used. For OPT++’s least squares methods, refer to Gauss-Newton on p

DAKOTA manages the following inputs for OPT++ methods from its input specification: the
maximum number of iterations and function evaluations, the convergence tolerance, the ou
verbosity, the search method, the maximum step, the gradient tolerance, the initial radius f
ellipsoid methods, and the search scheme size for PDS. See OPT++ Methods on page 165
additional details on these specifications.

The OPT++ library generates diagnostics in addition to those appearing in the DAKOTA ou
stream. These diagnostics are written to the fileOPT_DEFAULT.out in the working directory.

SGOPT Library

The SGOPT (Stochastic Global OPTimization) library [Hart, W.E., 1997] contains a variety
global optimization algorithms, with an emphasis on stochastic methods. SGOPT currently
includes the following global optimization methods: real-valued and integer-valued genetic
algorithms (sgopt_pga_real , sgopt_pga_int) and stratified Monte Carlo
(sgopt_strat_mc). Evolutionary pattern search algorithms, simulated annealing, tabu sea
and multistart local search (see The Coupled Approach on page 73) are global methods w
are under development but are not available in DAKOTA V1.0. Additionally, SGOPT include
several local search algorithms such as Solis-Wets (sgopt_solis_wets) and coordinate
pattern search (sgopt_coord_ps , sgopt_coord_sps).

For expensive optimization problems, SGOPT’s global optimizers are best suited for identif
promising regions in the global design space. In multimodal design spaces, the combinatio
global identification (from SGOPT) with efficient local convergence (from DOT, NPSOL, or
OPT++) can be highly effective. None of the SGOPT methods are gradient-based, which m
them appropriate for discrete and mixed variable problems as well as problems for which
gradient information is unavailable or is of questionable accuracy due to numerical noise. N
SGOPT methods currently support general linear and nonlinear constraints directly, althou
User’s Instructions Optimization Capabilities - SGOPT Library 56

ds:

, and
penalty function formulations for nonlinear constraints have been employed with success
[Ponslet, E.R., and Eldred, M.S., 1996].

DAKOTA manages the following inputs from its input specification for all of SGOPT’s metho
maximum number of iterations, maximum number of function evaluations, convergence
tolerance, output verbosity, evaluation synchronization, maximum number of CPU seconds
solution accuracy. In addition, each method has a variety of settings which are specific to it
alone. Refer to SGOPT Methods on page 168 for additional details on all of the SGOPT
specifications.
User’s Instructions Optimization Capabilities - SGOPT Library 57

n the

e

med

ctors
rete
eter

inuous

eter
ence

s of
nt
ethod

tin
nput
s

Uncertainty Assessment Capabilities
Introduction on page 58Monte Carlo Probability on page 58Mean Value on page 59

Introduction

Uncertainty assessment methods (also referred to as nondeterministic analysis methods) i
DAKOTA system involve the computation of probability distributions for response functions
based on sets of simulations taken from the specified probability distributions for uncertain
parameters. Thus them functions in the DAKOTA response data set are interpreted asm general
response functions (with no distinction between functions as with objective and constraint
functions in the optimizer branch) within the DAKOTA uncertainty assessment hierarchy.

Within the variables specification, uncertain variable descriptions are employed to define th
parameter probability distributions (see Uncertain Variables on page 138).

When gradient and/or Hessian information is used in the uncertainty assessment, it is assu
that derivative components will be computed only with respect to theuncertain variables (where
all uncertain variables are continuous). The omission of discrete variables from gradient ve
and Hessian matrices is common among all iterators (since derivatives with respect to disc
variables do not exist); however, inclusion of only the uncertain variables differs from param
study iterators (which assume derivatives with respect to all continuous variables) and from
optimization and least squares iterators (which assume derivatives with respect to the cont
design variables).

Monte Carlo Probability

The Monte Carlo probability iterator is selected using thenond_probability specification.
This iterator performs sampling for different parameter observations within a specified param
distribution in order to assess the distributions for response functions. Probability of occurr
is then assessed by comparing the response results against response thresholds.

All Monte Carlo methods are sampling methods which can be extremely expensive in term
the number of required function evaluations need to generate converged statistics. A differe
nondeterministic approach that can be less computationally demanding is the mean value m
(see Mean Value on page 59).

DAKOTA controls the observations, the random seed, the sample type (pure random or La
Hypercube), and the response thresholds for the Monte Carlo Probability method from its i
specification. See Monte Carlo Probability Method on page 175 for additional details on thi
method specification.
User’s Instructions Uncertainty Assessment Capabilities - Introduction 58

ter
ny

n

Mean Value

The mean value method is selected using thenond_mean_value specification. This iterator
computes approximate response function distribution statistics based on specified parame
distributions. The mean value method is a direct analytical method and does not perform a
random sampling.

Since the mean value method does not perform random sampling, it can be much less
computationally demanding than the Monte Carlo approach (see Monte Carlo Probability o
page 58). However, since the method is based on Gaussian distribution assumptions and
linearizations, the accuracy of the statistics must be carefully evaluated.

DAKOTA controls the response file names for the mean value method from its input
specification. See Mean Value Method on page 176 for additional details on this method
specification.
User’s Instructions Uncertainty Assessment Capabilities - Mean Value 59

ecial
ter
se
nd its
 with

tive

note
lation
res

trix
ntain
le as
nt to
.

rpose
s

es

uld be
Nonlinear Least Squares Capabilities
Introduction on page 60Gauss-Newton on page 61

Introduction

Nonlinear least squares methods in the DAKOTA system are optimizers which exploit the sp
structure of a least squares objective function. These problems commonly arise in parame
estimation and test/analysis reconciliation. In order to exploit the problem structure, respon
data at a “finer grain” are required. Rather than using the least squares objective function a
gradient, least squares iterators require each term in the sum-of-squares formulation along
its gradient as the data set returned by the simulation. This means that them functions in the
DAKOTA response data set consist of the individual terms in the sum-of-the-squares objec
function, rather than an objective function andm-1 constraint functions (as they are in the
optimizer branch). These individual terms are often called residuals in cases where they de
errors of observed quantities from desired quantities. Refer to Rosenbrock Problem Formu
on page 204 for an example showing the relationship between optimization and least squa
response functions.

This enhanced granularity allows for simplified computation of an approximate Hessian ma
which only uses residual derivative information, since terms in the Hessian matrix which co
residual second derivatives also contain the residuals themselves and will become negligib
the residuals tend towards zero. That is, residual function and gradient information is sufficie
define the value, gradient, and approximate Hessian of the least squares objective function

In practice, least squares solvers will tend to be significantly more efficient than general-pu
optimization algorithms when the residuals tend towards zero at the solution. Least square
solvers may experience difficulty when the residuals at the solution are significant.

As for optimization iterators, it is assumed that gradient and/or Hessian information will be
computed only with respect to thecontinuous design variables. The omission of discrete
variables from gradient vectors and Hessian matrices is common among all iterators (since
derivatives with respect to discrete variables do not exist); however, inclusion of only the
continuous design variables differs from parameter study iterators (which assume derivativ
with respect to all continuous variables) and from nondeterministic analysis iterators (which
assume derivatives with respect to the uncertain variables).

In order to specify a least-squares problem, the responses section of the Dakota input sho
configured usingnum_least_squares_terms to define the number of functions, using
eithernumerical_gradients , analytic_gradients , ormixed_gradients to
define the gradients of these least squares terms, and usingno_hessians , since no Hessian
will be supplied from the simulator (it will be approximated internally).
User’s Instructions Nonlinear Least Squares Capabilities - Introduction 60

es
ss-

local
n

s),
aries
DOT
e

rance.
Gauss-Newton

Gauss-Newton iterators (DAKOTA’soptpp_g_newton andoptpp_bcg_newton methods)
approximate the true Hessian matrix by neglecting terms in which the residual function valu
appear, under the assumption that the residuals tend towards zero at the solution. The Gau
Newton algorithm is part of the OPT++ package [Meza, J.C., 1994]. For a more complete
description of the OPT++ package, refer to OPT++ Library on page 55.

Gauss-Newton is a gradient-based algorithm and is best suited for efficient navigation to a
least squares solution in the vicinity of the initial point. Global solutions in nonconvex desig
spaces may be missed. DAKOTA’soptpp_g_newton andoptpp_bcg_newton methods
differ in their support for bound constraints. Since bound constraints are commonly very
important for keeping parameters within physically meaningful ranges,optpp_bcg_newton
will often be the method of choice for parameter estimation.

Neitheroptpp_g_newton noroptpp_bcg_newton support general linear or nonlinear
constraints. If these types of constraints are present (fairly rare in typical estimation problem
general-purpose optimization methods such as those available in the DOT and NPSOL libr
can be used (see DOT Library on page 54 and NPSOL Library on page 55). While neither
nor NPSOL exploit the special structure of a sum of the squares objective function, both ar
effective general-purpose algorithms for solving constrained minimization problems.

DAKOTA manages the following inputs for the Gauss-Newton method from its input
specification: the maximum number of iterations and function evaluations, the convergence
tolerance, the output verbosity, the search method, the maximum step, and the gradient tole
See OPT++ Methods on page 165 for additional details on these specifications.
User’s Instructions Nonlinear Least Squares Capabilities - Gauss-Newton 61

 sets
y

e

nction

lues
meter

vided

tities

o
 tuned

g code
eter

or a

ccept
esign
itial
m
int
tive

tain,
n), so
rators

e

Parameter Study Capabilities
Introduction on page 62 Initial Values on page 63Data Cataloguing on page 63Vector Parameter Study on page 63List Parameter Study on page 65Centered Parameter Study on page 66Multidimensional Parameter Study on page 67

Introduction

Parameter study methods in the DAKOTA system involve the computation of response data
at a selection of points in the parameter space. The response functions are not linked to an
specific interpretation, so them functions in the DAKOTA response data set which are being
catalogued by the study can consist of any optimization, least squares, or generic respons
function definition which is allowable by the responses input specification (see Responses
Commands on page 141). This allows a parameter study iterator to be used in direct conju
with optimization, least squares, and uncertainty quantification iterators without significant
modification to the input file. In addition, response data sets are not restricted to function va
only; gradients and Hessians of the response functions can also be catalogued by the para
study. This allows for several different levels of “sensitivity analysis”: (1) the variation of
function values over parameter ranges provides indirect information on the sensitivity of the
functions to those parameters, (2) derivative information can be computed numerically, pro
analytically by the simulator, or both (mixed gradients) in directly determining sensitivity
information at a point or points in parameter space, and (3) the variation of derivative quan
through the parameter space can be investigated.

In addition to the cited sensitivity analysis applications, parameter study capabilities are als
commonly used for investigating simulation nonsmoothness issues (so that models can be
for use with gradient-based optimization algorithms), generating parameter and response
ensembles for response surface generation or parameter space visualization, and performin
verification (verifying simulation robustness) through parameter ranges of interest. A param
study iterator can also be used as either a pre-processor (to identify a good starting point)
post-processor (for post-optimality analysis) within a multilevel hybrid optimization strategy
(see Multilevel Hybrid Optimization on page 71), since each parameter study iterator can a
the best design point found in a previous study as its starting point or pass along its best d
point for subsequent iteration or both. Note that only those parameter studies which use in
values (see Initial Values on page 63) will be affected by accepting the best design point fro
previous iteration. The best design point found in a parameter study is defined to be the po
with the least constraint violation, or if there are no violations, the point with the lowest objec
function.

Parameter study iterators will iterate any set of variables (any combination of design, uncer
and state variables) into any set of responses (any function, gradient, and Hessian definitio
there are no restrictions on valid data set definitions. More specifically, parameter study ite
draw no distinction between different types of variables and different types of response
functions. They simply pass all of the variables defined in the variables specification into th
interface, from which they expect to retrieve all of the responses defined in the responses
specification. The only subtle distinction involves the set of variables for which function
User’s Instructions Parameter Study Capabilities - Introduction 62

n the
ect to
The
ng all
n of

astly,
e

point
, the

 each
wing

 the

-
te
ltiple
l
ons
n page

re
tudy:
derivatives are computed. When gradient and/or Hessian information is being catalogued i
parameter study, then it is assumed that derivative components will be computed with resp
all of thecontinuous variables (continuous design, uncertain, and state variables) specified.
omission of discrete variables from gradient vectors and Hessian matrices is common amo
iterators (since derivatives with respect to discrete variables do not exist); however, inclusio
all continuous variables differs from optimization and least squares iterators (which assume
derivatives only with respect to the continuous design variables) and from nondeterministic
analysis iterators (which assume derivatives only with respect to the uncertain variables). L
while discrete variables (if present) will be mapped through the interface, enumeration of th
discrete values of these variables by the parameter study methods is not yet supported.

Initial Values

The vector and centered parameter studies use the initial values of the variables from the
variables commands specification (see Variables Commands on page 134) as the starting
and the central point of the parameter studies, respectively. In the case of design variables
initial_point is used. In the case of state variables, theinitial_state is used. In the
case of uncertain variables, there is no initial value specification and 0.0 is used initially for
of these variables (NOTE: the mean might be a better value than 0.0). Therefore, in the follo
discussions, “Initial Values” are defined byinitial_point , initial_state , and 0.0 for
the design, state, and uncertain variables specified in the study, respectively.

Data Cataloguing

All parameter study algorithms catalogue the parameters and responses for each function
evaluation in a special file nameddakota_pstudy.dat . This file is intended to simplify
plotting of parameter study data by making the data available in concise form separate from
other information available in the main output file (i.e.,dakota.out).

Vector Parameter Study

The vector parameter study computes response data sets at selected intervals along a one
dimensional vector in parameter space. This capability encompasses both single-coordina
parameter studies (to study the effect of a single variable on a response set) as well as mu
coordinate vector studies (to investigate the response variations along some n-dimensiona
vector). In addition to these uses, this capability is used recursively within the implementati
of the centered and multidimensional parameter studies (see Centered Parameter Study o
66 and Multidimensional Parameter Study on page 67).

Dakota’s vector parameter study includes three possible specification formulations which a
used in conjunction with the Initial Values to define the vector and steps of the parameter s

{final_point = <LISTof><REAL>} and {step_length = <REAL>}
User’s Instructions Parameter Study Capabilities - Vector Parameter Study 63

int and
ctor as
tial
{final_point = <LISTof><REAL>} and {num_steps = <INTEGER>}
{step_vector = <LISTof><REAL>} and {num_steps = <INTEGER>}

In each of these three cases, the Initial Values are used as the parameter study starting po
the specification selected from the three above defines the orientation and length of the ve
well as the increments to be evaluated along the vector. Several examples starting from Ini
Values of 1.0, 1.0, 1.0 are included below:

final_point = 1.0, 2.0, 1.0 andstep_length = .4:
Parameters for function evaluation 1:
 1.0000000000e+00 d1
 1.0000000000e+00 d2
 1.0000000000e+00 d3
Parameters for function evaluation 2:
 1.0000000000e+00 d1
 1.4000000000e+00 d2
 1.0000000000e+00 d3
Parameters for function evaluation 3:
 1.0000000000e+00 d1
 1.8000000000e+00 d2
 1.0000000000e+00 d3

final_point = 2.0, 2.0, 2.0 andstep_length = .4:
Parameters for function evaluation 1:
 1.0000000000e+00 d1
 1.0000000000e+00 d2
 1.0000000000e+00 d3
Parameters for function evaluation 2:
 1.2309401077e+00 d1
 1.2309401077e+00 d2
 1.2309401077e+00 d3
Parameters for function evaluation 3:
 1.4618802154e+00 d1
 1.4618802154e+00 d2
 1.4618802154e+00 d3
Parameters for function evaluation 4:
 1.6928203230e+00 d1
 1.6928203230e+00 d2
 1.6928203230e+00 d3
Parameters for function evaluation 5:
 1.9237604307e+00 d1
 1.9237604307e+00 d2
 1.9237604307e+00 d3

final_point = 2.0, 2.0, 2.0 andnum_steps = 4:
Parameters for function evaluation 1:
 1.0000000000e+00 d1
 1.0000000000e+00 d2
 1.0000000000e+00 d3
Parameters for function evaluation 2:
 1.2500000000e+00 d1
 1.2500000000e+00 d2
 1.2500000000e+00 d3
User’s Instructions Parameter Study Capabilities - Vector Parameter Study 64

 on

e. These
Parameters for function evaluation 3:
 1.5000000000e+00 d1
 1.5000000000e+00 d2
 1.5000000000e+00 d3
Parameters for function evaluation 4:
 1.7500000000e+00 d1
 1.7500000000e+00 d2
 1.7500000000e+00 d3
Parameters for function evaluation 5:
 2.0000000000e+00 d1
 2.0000000000e+00 d2
 2.0000000000e+00 d3

step_vector = .1, .1, .1 andnum_steps = 4:
Parameters for function evaluation 1:
 1.0000000000e+00 d1
 1.0000000000e+00 d2
 1.0000000000e+00 d3
Parameters for function evaluation 2:
 1.1000000000e+00 d1
 1.1000000000e+00 d2
 1.1000000000e+00 d3
Parameters for function evaluation 3:
 1.2000000000e+00 d1
 1.2000000000e+00 d2
 1.2000000000e+00 d3
Parameters for function evaluation 4:
 1.3000000000e+00 d1
 1.3000000000e+00 d2
 1.3000000000e+00 d3
Parameters for function evaluation 5:
 1.4000000000e+00 d1
 1.4000000000e+00 d2
 1.4000000000e+00 d3

For additional information, refer to the commands specification for Vector Parameter Study
page 176.

List Parameter Study

The list parameter study computes response data sets at selected points in parameter spac
points are explicitly specified by the user and are not confined to lie on any line or surface.

This iterator requires the following specification:
{list_of_points = <LISTof><REAL>}

This parameter study simply performs simulations for the first parameter set (the firstn entries in
the list), followed by the next parameter set (the nextn entries), and so on, until the list of points
has been exhausted. Since the Initial Values will not be used, they need not be specified.
User’s Instructions Parameter Study Capabilities - List Parameter Study 65

ple in

page

ter,
rs in
ility
 at a
nt

lus
An example specification which would result in the same parameter sets as in the first exam
Vector Parameter Study on page 63 would be:

list_of_points = 1.0, 1.0, 1.0, 1.0, 1.4, 1.0, 1.0, 1.8, 1.0

For additional information, refer to the commands specification for List Parameter Study on
178.

Centered Parameter Study

The centered parameter study executes multiple vector parameter studies, one per parame
centered about the specified Initial Values. This is useful for investigation of function contou
the vicinity of a specific point. For example, after computing an optimum design, this capab
could be used for post-optimality analysis in verifying that the computed solution is actually
minimum or constraint boundary and in investigating the shape of this minimum or constrai
boundary.

This iterator requires the following specifications:
{percent_delta = <REAL>}
{deltas_per_variable = <INTEGER>}

wherepercent_delta specifies the size of the increments in percent and
deltas_per_variable specifies the number of increments per variable in each of the p
and minus directions.

For example, with Initial Values of 1.0, 1.0,percent_delta = 10.0, and
deltas_per_variable = 2, five function evaluations (two minus deltas, the center point,
and two plus deltas) would be performed per variable:

Parameters for function evaluation 1:
 8.0000000000e-01 d1
 1.0000000000e+00 d2
Parameters for function evaluation 2:
 9.0000000000e-01 d1
 1.0000000000e+00 d2
Parameters for function evaluation 3:
 1.0000000000e+00 d1
 1.0000000000e+00 d2
Parameters for function evaluation 4:
 1.1000000000e+00 d1
 1.0000000000e+00 d2
Parameters for function evaluation 5:
 1.2000000000e+00 d1
 1.0000000000e+00 d2
Parameters for function evaluation 6:
 1.0000000000e+00 d1
 8.0000000000e-01 d2
Parameters for function evaluation 7:
 1.0000000000e+00 d1
 9.0000000000e-01 d2
Parameters for function evaluation 8:
User’s Instructions Parameter Study Capabilities - Centered Parameter Study 66

dy on

ween
 is
 1.0000000000e+00 d1
 1.0000000000e+00 d2
Parameters for function evaluation 9:
 1.0000000000e+00 d1
 1.1000000000e+00 d2
Parameters for function evaluation 10:
 1.0000000000e+00 d1
 1.2000000000e+00 d2

This set of points in parameter space is depicted in Figure 13

Figure 13 Example centered parameter study.

For additional information, refer to the commands specification for Centered Parameter Stu
page 178.

Multidimensional Parameter Study

The multidimensional parameter study computes response data sets for an n-dimensional
hypergrid of points. Each continuous variable is partitioned into equally spaced intervals bet
its upper and lower bounds, and each combination of the values defined by these partitions
evaluated. The number of function evaluations performed in the study is:

(6)

The partitions information is specified as follows:
{partitions = <LISTof><INTEGER>}

d1

d2

1

0
1

partitions i 1+()
i 1=

n

∏

User’s Instructions Parameter Study Capabilities - Multidimensional Parameter Study 67

e.,

ree
where the entries in the list specify the number of partitions for each continuous variable (i.

). Since the Initial Values will not be used, they need not be specified.

In a two variable example problem with d1∈ [0,2] and d2∈ [0,3] (as defined by the upper and
lower bounds specified in the variables specification) and withpartitions = 2,3 , the
interval [0,2] is divided into two equal-sized partitions and the interval [0,3] is divided into th
equal-sized partitions. This two-dimensional grid, shown in Figure 14,

Figure 14 Example multidimensional parameter study

 would result in the following twelve function evaluations:
Parameters for function evaluation 1:
 0.0000000000e+00 d1
 0.0000000000e+00 d2
Parameters for function evaluation 2:
 1.0000000000e+00 d1
 0.0000000000e+00 d2
Parameters for function evaluation 3:
 2.0000000000e+00 d1
 0.0000000000e+00 d2
Parameters for function evaluation 4:
 0.0000000000e+00 d1
 1.0000000000e+00 d2
Parameters for function evaluation 5:
 1.0000000000e+00 d1
 1.0000000000e+00 d2
Parameters for function evaluation 6:
 2.0000000000e+00 d1
 1.0000000000e+00 d2
Parameters for function evaluation 7:
 0.0000000000e+00 d1

partitions i

d1

d2

1

2

3

0 1 2

3 partitions

2 partitions
User’s Instructions Parameter Study Capabilities - Multidimensional Parameter Study 68

eter
 2.0000000000e+00 d2
Parameters for function evaluation 8:
 1.0000000000e+00 d1
 2.0000000000e+00 d2
Parameters for function evaluation 9:
 2.0000000000e+00 d1
 2.0000000000e+00 d2
Parameters for function evaluation 10:
 0.0000000000e+00 d1
 3.0000000000e+00 d2
Parameters for function evaluation 11:
 1.0000000000e+00 d1
 3.0000000000e+00 d2
Parameters for function evaluation 12:
 2.0000000000e+00 d1
 3.0000000000e+00 d2

For additional information, refer to the commands specification for Multidimensional Param
Study on page 179.
User’s Instructions Parameter Study Capabilities - Multidimensional Parameter Study 69

ators,
ol” of
on
fine
an lead

ore

gure
y in
. Fine-

trategy
l

he
an
astic

 is

design
n

the
e
llelism

 been
Strategy Capabilities
Introduction on page 70Single Method on page 71Multilevel Hybrid Optimization on page 71The Uncoupled Approach on page 71The Uncoupled Adaptive Approach on page 72The Coupled Approach on page 73Sequential Approximate Optimization on page 74Optimization Under Uncertainty on page 75Branch and Bound on page 76

Introduction

Dakota’s strategy layer was developed to provide a means for management of multiple iter
models, and approximations. It was driven by the observed need for high level “meta-contr
optimization and other system analysis processes. By providing an additional level of logic
top of the iterators, it becomes possible to develop adaptive strategies which switch and re
iterators and models based on run-time performance assessments. This adaptive control c
to automated procedures which exploit the capabilities of several iterators, manage varying
model fidelity, and incorporate approximations for the purpose of navigating to the solution m
reliably and efficiently than with single method approaches.

Several advanced approaches are available within the strategy class hierarchy shown in Fi
12. In the multilevel hybrid strategy, two or more optimizers are combined in a hybrid strateg
which the best point from one iterator is used as the starting point for a subsequent iterator
grained control, effective switching metrics, and the existence of multiple iteration follow-on
candidates from some global methods are important research issues. The single method s
invokes only one iterator and can be viewed as a “fall through” strategy in that no additiona
coordination is performed at the strategy layer and control falls through to the iterator. The
branch and bound strategy is used for solution of mixed continuous/discrete applications. T
nondeterministic optimization strategy (a.k.a. optimization under uncertainty) incorporates
uncertainty quantification within the optimization process. It can be used to minimize stoch
quantities, such as probability of failure. Use of nested and segregated frameworks is an
important research issue. In the sequential approximate optimization strategy, an optimizer
interfaced with an approximate design space representation in order to find an approximate
optimal solution. “Exact” evaluations at this approximate optimal solution are then used to
update the approximation and restart the sequence. Here, the effective use of experimental
techniques, the development of accurate approximations using a minimal number of functio
evaluations, and the development of provably convergent approaches for sequential
approximation are important research issues.

In addition to management of multiple iterators and models, the strategy layer implements
master-slave algorithm for exploiting parallelism by providing separation of iterator code (th
master processor) from model server code (the slave processors). Refer to Exploiting Para
on page 99 for additional details.

Several strategies continue to be works in progress. Therefore, “STATUS” statements have
added at the end of each of the following strategy descriptions.
User’s Instructions Strategy Capabilities - Introduction 70

hod
er’s

s

ple

daptive

ethod

ach

ria
Single Method

The single method strategy is implemented within theSingleMethodStrategy class and is
invoked with thesingle_method selection in the user’s strategy section specification (see
Single Method Commands on page 152 for additional specification details). The single met
strategy is also used as the default strategy if no strategy specification is included in the us
input file.

The single method strategy is used to invoke a singleDakotaIterator object which iterates on a
singleDakotaModel object. This “strategy” is provided since the main program of DAKOTA i
bound to the instantiation and execution of one of the strategies within theDakotaStrategyclass
hierarchy. That is, even if coordination of multiple iterators and models is not needed, a sim
strategy is still required to create the iterator and the model and perform the iteration.

STATUS: Fully operational.

Multilevel Hybrid Optimization

The multilevel hybrid strategy is implemented within theMultilevelOptStrategy class and is
invoked with themulti_level selection in the user’s strategy section specification (see
Multilevel Hybrid Optimization Commands on page 152 for additional specification details).
There are three multilevel approaches available: the uncoupled approach, the uncoupled a
approach, and the coupled approach.

The Uncoupled Approach

In the uncoupled approach, a sequence of methods is invoked in the order specified in a m
list specification. The best solution from each method is used as the starting point for the
following method. Method switching is governed by the separate convergence controls of e
method; that is,each iterator is allowed to run to its own internal definition of completion
without interference. Individual method completion may be determined by convergence crite
(e.g.,convergence_tolerance) or iteration limits (e.g.,max_iterations).

The basic algorithm, in simplified form, is shown in Figure 15:
User’s Instructions Strategy Capabilities - Single Method 71

t

ined

 cycle
g
d
gged
ntally
trics

?).
e
ic, the
itch
“how
od is
Figure 15 Uncoupled multilevel hybrid optimization strategy

whererun_iterator() andbest_variables() are virtual functions which define a
generic behavior valid for all iterators for which the specific implementation can vary. This
strategy is relatively simple since the only coordination required is the transferral of the bes
solution between successive iterators.

STATUS: Fully operational.

The Uncoupled Adaptive Approach

The simple uncoupled approach is being extended through development of more finely gra
iterator control using “iterator++” overloaded operators. In this approach,optimization
algorithms are incremented one optimization cycle at a time and intermediate performance data
are returned as a basis for adaptive switching. For example, a gradient-based optimization
consists of computing objective and constraint gradients, computing a search direction usin
these gradients, and performing a line search along the search direction to find an improve
point. By executing an optimizer one cycle at a time, a history of improved points can be lo
and relative performance metrics can be defined. These performance metrics are fundame
different than the convergence metrics used in the nonadaptive approach: convergence me
typically assess whether the method can make any additional progress within a specified
tolerance (e.g., are the Kuhn-Tucker conditions for a constrained minimum approximately
satisfied?) whereas performance metrics measure the rate of progress (i.e., has the rate of
improvement in objective minimization and/or constaint satisfaction decreased significantly
While this distinction is somewhat fuzzy since some convergence metrics (e.g., convergenc
tolerance on relative change in the objective function) are similar to a rate of progress metr
key point is that we may want to terminate a method prior to its formal convergence and sw
to another method. Put another way, this distinction can be cast as “are we there?” versus
fast are we getting there?” Certainly, the former question is most appropriate when one meth
available; however, the availability of multiple methods in a hybrid strategy admits a more
aggressive approach.

The basic algorithm, in simplified form, is shown in Figure 16:

Run iterator

Transfer

to completion

to next

for (i=0; i<numIterators; i++) {
 iterators[i].run_iterator();
 if (i+1 < numIterators) {
 vars_star = iterators[i].best_variables();

 iterators[i+1].design_variables(vars_star);
 }
}

best vars.

iterator
User’s Instructions Strategy Capabilities - Multilevel Hybrid Optimization 72

ly
r cycle

pass

ment

n

h like

h
d GA/
upled
ion.
st
ut the
Figure 16 Uncoupled adaptive multilevel hybrid optimization strategy

where the overloaded++ operator,best_responses() , andbest_variables() are
virtual functions, andprogThreshold contains a user specified progress threshold (see
Multilevel Hybrid Optimization Commands on page 152). This strategy requires considerab
more sophistication than the standard uncoupled approach since additional mechanisms fo
control and progress computation are required for all of the optimizers.

Definition of an appropriate progress metric can be troublesome when attempting to encom
broad classes of methods. In general, the DAKOTA approach to this is to compute rate of
convergence history information over a series of optimization cycles. When rate of improve
slows from previous cycles, theprogMetric (normalized between 0.0 and 1.0) will be small
and may fall below theprogThreshold and trigger a method switch. By selecting a large
progThreshold value (closer to 1.0), the user can specify aggressive method switching i
which a slight decrease in convergence rate will trigger a switch, whereas a small
progThreshold (closer to 0.0) will be considerably more tolerant of (perhaps transient)
decreases in convergence rate. In this latter case, the adaptive approach may perform muc
the uncoupled approach and, in fact, the internal convergence criteria may trigger method
completion prior toprogMetric triggering a method switch.

STATUS: adaptive “iterator++” approach under development.

The Coupled Approach

The coupled approach implements specific hybrid algorithms available within SGOPT whic
exploit a tighter coupling to achieve peak performance. For example, whereas an uncouple
local search hybrid would use the best solution found from a GA to start a local search, a co
hybrid would use local search to occasionally improve members in an evolving GA populat
That is, in an uncoupled approach, multiple methods run one at a time sharing only their be
results at completion, while in a coupled approach, methods are working together througho
strategy to synergistically improve the solution.

Increment 1 cycle
Get results
Compute progress

for (i=0; i<numIterators; i++) {
 while (progMetric >= progThreshold) {
 iterators[i]++;
 r_star = iterators[i].best_responses();
 progMetric = compute_progress(r_star);
 }
 if (i+1 < numIterators) {
 vars_star = iterators[i].best_variables();

 iterators[i+1].design_variables(vars_star);
 }
}

Transfer

to next
best vars.

iterator

Optimization loop:
User’s Instructions Strategy Capabilities - Multilevel Hybrid Optimization 73

re

 one

A
),

his
e it
r all

d

nt.

nds

in

d for
 of the

new
Whereas in the uncoupled approach, the number of methods and possible combinations a
unlimited, the coupled approach has only a few allowable method combinations. Only two
methods are specified (as opposed to an open-ended method list): one global method and
local method. The allowable global methods are currentlysgopt_pga_real and
sgopt_strat_mc , and the allowable local methods are currentlysgopt_solis_wets ,
sgopt_coord_ps , andsgopt_coord_sps . More methods will be allowable selections in
future releases. In thesgopt_pga_real case, local search is used to periodically improve G
population members. In thesgopt_strat_mc case (also known as “multi-start local search”
local search is applied with a prescribed probability to Monte Carlo samples. When a local
search is performed, it is performed immediately (prior to evaluation of the next sample). T
type of iterator coordination makes it a coupled approach by definition, although in this cas
only differs from an uncoupled approach (in which local searches would be performed afte
sampling was complete) in the effect of order-dependent termination criteria such as
max_function_evaluations and, possibly, in how iteration follow-on candidates are
selected. Thesgopt_strat_mc coupled hybrid is not a particularly sophisticated hybrid an
is not recommended for optimization with expensive engineering simulations. It is primarily
useful for its theoretical simplicity as a benchmark for comparison with more efficient
approaches (i.e., the GA coupled hybrids).

STATUS: strategy wrapper for SGOPT multi-start and global/local hybrids under developme

Sequential Approximate Optimization

The sequential approximate optimization strategy is implemented within the
SeqApproxOptStrategy class and is invoked with theseq_approximate_opt selection in
the user’s strategy section specification (see Sequential Approximate Optimization Comma
on page 154 for additional specification details).

In theseq_approximate_opt strategy, two models (actualModel andapproxModel)
and one iterator (selectedIterator) are constructed. TheapproxModel contains one of
the approximation methods from the hierarchy described in The Approximation Interface on
page 95 and theactualModel contains one of the simulation interfacing methods described
The Application Interface on page 79. First, the approximation withinapproxModel is built
using function evaluations which are selected via a design of experiments and which are
performed with theactualModel . TheselectedIterator then iterates on
approxModel (it is bound to this model in the strategy constructor) and computes an
approximate optimum. This approximate optimum is evaluated with theactualModel and the
resulting parameter/response pair is evaluated for improvement from the previous cycle an
convergence of the process. Based on the observed improvement, the extent (i.e. bounds)
approximation is modified via trust region concepts. If the process is not converged, then the
parameter/response pair from theactualModel is used to update theapproxModel .
Iteration is then reinitiated on the updatedapproxModel and the process repeats until
convergence. It is worth emphasizing that the iterator only iterates onapproxModel . The
User’s Instructions Strategy Capabilities - Sequential Approximate Optimization 74

ed

l

s the
ugh

e

timize
tion
actualModel is only used for building and updating the approximation and is never iterat
directly.

The basic algorithm, in simplified form, is shown in Figure 17:

Figure 17 Sequential approximate optimization strategy

whererun_iterator() andbest_variables() are virtual functions within the iterator
hierarchy andbuild_approximation() , modify_approximation() , and
update_approximation() are virtual functions within the interface hierarchy. It is critica
for themodify_approximation() step to perform operations (e.g., modify trust regions)
which assure convergence of the sequential process.

STATUS: Operational, but undergoing convergence enhancements.

Optimization Under Uncertainty

The optimization under uncertainty strategy is implemented within theNonDOptStrategy class
and is invoked with theopt_under_uncertainty selection in the user’s strategy section
specification (see Optimization Under Uncertainty Commands on page 154 for additional
specification details).

In theopt_under_uncertainty strategy, two models (designModel and
uncertainModel) and two iterators (optIterator andnonDIterator) are constructed.
ThedesignModel provides a mapping of a set of design variables into a set of design
responses (an objective function and constraints) through the use of one interface, wherea
uncertainModel maps a set of uncertain variables into a set of uncertain responses thro
another interface. TheoptIterator iterates ondesignModel in the optimization loop and
thenonDIterator iterates onuncertainModel in the uncertainty quantification loop.
Note thatthe mappings for both models are deterministic; it is the ensemble of
uncertainModel mappings based on the set of uncertain variable realizations that provid
the desired statistics for the uncertain responses.

In the case of a nested approach, the optimization loop is the outer loop which seeks to op
a nondeterministic quantity (e.g., minimize probability of failure). The uncertainty quantifica

Evaluate soln.
Modify extent
Add new data

Main loop:
approxModel.build_approximation();
while (conv_metric > conv_tol) {

selectedIterator.run_iterator();
v_star = selectedIterator.best_variables();
r_star = actualModel.compute_response(v_star);
approxModel.modify_approximation(r_star);
approxModel.update_approximation(v_star,r_star);

}

Initialize approx.

Get approx.soln.
Optimize approx.
User’s Instructions Strategy Capabilities - Optimization Under Uncertainty 75

on

r to
bility

oach
 for

in
.,
ugh
inner loop evaluates this nondeterministic quantity (e.g., compute the probability of failure)
each optimization function evaluation.

For a segregated approach, the loops are not nested, rather they are executed in repeated
succession until convergence. The coupling of the uncertainty quantification to the design
process occurs through the adjustment of the optimization objective and constraints in orde
modify the statistical performance of the optimal design computed (e.g., to adjust the proba
of failure of a minimum weight design by changing the stress allowables). The nested appr
is desirable since it removes the compounded expense of nested loops; however, the logic
modifying the design objectives is heuristic and application-dependent.

STATUS: Under development. Not yet operational.

Branch and Bound

The branch and bound strategy is implemented within theBranchBndStrategy class and is
invoked with thebranch_and_bound selection in the user’s strategy section specification
(see Branch and Bound Commands on page 155 for additional specification details).

It employs the PICO branching engine ([Eckstein, J., Hart, W.E., and Phillips, C.A., 1997])
combination with DAKOTA’s multilevel parallelism facilities ([Eldred, M.S., and Schimel, B.D
1999]) to enable parallel solution of nonlinear mixed continuous and discrete problems thro
parameter domain decomposition (branching) and nonlinear solution of optimization
subproblems with relaxation of integrality constraints (bounding).

STATUS: Operational. To be available in DAKOTA V1.2.
User’s Instructions Strategy Capabilities - Branch and Bound 76

or the
he

tions.
tion,
g (for

for
he

zation

d

s from
lasses
which
y
O.,
Simulation Interfacing
Dakota Interface Abstraction on page 77The Application Interface on page 79The Direct Function Application Interface on page 803-piece Interface on page 811-piece Interface on page 81The System Call Application Interface on page 813-piece Interface on page 811-piece Interface on page 82Additional Features on page 82Examples on page 83DAKOTA File Data Formats on page 85Failure capturing on page 93 Failure detection on page 93Failure communication on page 93Failure recovery on page 94The Approximation Interface on page 95 Building an approximation on page 96Updating an approximation on page 96Modifying an approximation on page 96Performing function evaluations on page 97The RSM Approximation Interface on page 97The MARS Approximation Interface on page 97The ANN Approximation Interface on page 98

Dakota Interface Abstraction

DAKOTA’s interfacing capabilities are encompassed within an interface abstraction. This
abstraction is the general concept of mapping a set of parameters into a set of responses f
purpose of performing a function evaluation. The implementation of this abstraction within t
DakotaInterface class hierarchy involves the use of a variety of evaluation mechanisms and
communication protocols, each of which shares this common functionality of parameter to
response mapping. Supported evaluation mechanisms currently include interfacing with
simulation codes, employing response approximations, and employing internal testing func
And currently supported communication protocols include system calls with file communica
direct function invocations with parameter list communication, and parallel message-passin
either direct communication with simulations or in combination with system call and direct
function invocation and communication). In addition, coordination of disciplinary simulations
multidisciplinary optimization with the global sensitivity equations is a natural extension to t
supported evaluation mechanisms, and CORBA and JAVA binding with geographically
distributed analysis services (e.g., for interface with Sandia’s CORBA-based Product Reali
Environment) is an attractive extension to the supported communication protocols. These
additions will continue to extend the breadth of possible DAKOTA problem solving
environments.

DAKOTA provides a framework for the implementation of these evaluation mechanisms an
communication protocols within theDakotaInterface class hierarchy shown in Figure 18. The
DakotaInterface base class provides the starting point from which specialized interface
mechanisms are created. This base class contains the virtualmap function which each derived
class must redefine in order to implement its particular mechanism for generating response
a set of parameters. Furthermore, this base class provides the envelope for derived letter c
in a letter/envelope idiom design. The letter/envelope idiom is an advanced C++ construct
provides mechanisms for enhanced polymorphism (the envelope is a generic handle for an
derived class) and for smart memory management through reference counting [Coplien, J.
1992].
User’s Instructions Simulation Interfacing - Dakota Interface Abstraction 77

e
 the

ough
ats on

eeded.

o it

ed

d

Figure 18 The DakotaInterface class hierarchy

TheApplicationInterface andApproximationInterface classes provide base classes for thos
interfaces dealing with simulation codes and response approximations, respectively. Within
ApplicationInterface branch, simulation codes may be interfaced using system calls (the
SysCallApplicInterface class) or through direct function calls (theDirectFnApplicInterface
class). The system call application interface communicates with the simulation it spawns thr
the use of files. In this case, data formats are very important (see DAKOTA File Data Form
page 85). However, in the direct function application interface case, C++ references to data
structures are passed directly to the simulation; files and specialized data formats are not n
In addition to invoking simulations which are linked into the DAKOTA executable, the direct
function application interface is also used for algorithm testing with internal test functions, s
serves a dual purpose.

TheApproximationInterface branch implements a variety of approximations which can be us
as surrogates in place of actual simulations. TheANNApproxInterface , RSMApproxInterface ,
andMARSApproxInterface classes implement artificial neural networks, response surface
methods, and multivariate adaptive regression splines, respectively. In addition, an
MPAApproxInterface class is planned for implementing multipoint approximations. Each of
these approximation classes must implement methods for building, updating, modifying, an
performing function evaluations with the approximation.

DakotaInterface

ApproximationInterfaceApplicationInterface

DirectFnSysCall RSMANN MARS MPA
User’s Instructions Simulation Interfacing - Dakota Interface Abstraction 78

esign
, the

a
ity
he

m

eads
lish

om

bility
t

ently
f
ystem
f
hether
The Application Interface

Figure 19 The Application Interface Concept

By providing a generic interface for the mapping of a set of parameters (e.g., the vector of d
variables) into a set of responses (e.g., an objective function, constraints, and sensitivities)
Application Interface hides the specific complexities of a given problem from the iterator
method. All of an application’s disciplinary specifics and implementation details are
encapsulated within the Application Interface box in Figure 19. External to that box, the dat
flows between the iterator and the simulator are generic and abstract. Isolation of complex
through the development of generic interfaces is a cornerstone of object-oriented design (t
concept of “one interface, many methods”).

Housed within the Application Interface are three main components. The input filter progra
(“IFilter” in Figure 19) provides a communication link which transforms the set of DAKOTA
input parameters into the input required by the simulator program. The simulator program r
its input and computes its results (a driver program/script is optional and is used to accomp
nontrivial command syntax and/or progress monitoring). Finally, the output filter program
(“OFilter” in Figure 19) provides another communication link through the recovery of data fr
the simulation results and the computation of the desired response data set. The two filter
programs are generally application specific, although it is a project goal to maximize reusa
through the build-up of generic libraries of filtering capabilities over time. Note that the inpu
and output filters are part of the Application Interface and are named “input” and “output”
relative to the simulator program.

The Application Interface mapping can be accomplished in several ways. The two ways curr
in use are the direct function and system call methods. The former uses direct invocation o
linked-in functions to perform the parameter to response mapping, whereas the latter uses s
calls to external programs and file-based communication to perform the mapping. In both o
these cases, either a 3-piece interface or a 1-piece interface may be used, which differ in w
or not they use filter programs. The following sections describe these two approaches as
embodied in the direct function application interface and system call application interface
classes.

IFilter OFiltersimulator
program

Application Interface

Parameters Responses

Iterator

Optional
Analysis Driver
User’s Instructions Simulation Interfacing - The Application Interface 79

iques
y

m

6],
995])
ms
till
he
d
with

ons

ions
of The

r

e
hin

re
ttern”
iple
Following the discussion of the direct function and system call application interfaces, techn
for capturing simulation failures within application interfaces are presented. Failure recover
options include abort, retry, recover, and continuation.

The Direct Function Application Interface

The direct function application interface capability may be used to invoke simulation codes
which are linked into the DAKOTA executable or to invoke internal test functions for algorith
performance testing. This option, in an earlier incarnation, was used in the TWAFER CVD
heater design application ([Moen, C.D., Spence, P.A., Meza, J.C., and Plantenga, T.D., 199
[Moen, C.D., Spence, P.A., and Meza, J.C., 1995], and [Meza, J.C., and Plantenga, T.D., 1
in order to improve data precision and efficiency by eliminating system calls for filter progra
and file transfer of parameter/response data. In this earlier incarnation, a system call was s
required for the simulator program since, although the TWAFER filters were compiled into t
Dakota executable, the TWAFER simulation code was not. In the current direct function an
system call capabilities, the entire parameter to response mapping must be accomplished
either system calls or direct function calls. No combinations are allowed.

In order to use the direct function capability with a new simulation or new test function (not
previously interfaced), the following steps have to be performed:

1. the functions to be invoked must have their main programs changed into callable functi
with the following prototype:int function_name(const DakotaVariables&
vars, const DakotaIntArray& asv, DakotaResponse& response) . The
same prototype is used for filter and analysis programs (which departs from the distinct
between filters and analysis shown in the command line file name passing procedures
System Call Application Interface on page 81).

2. the if-else blocks inDirectFnApplicInterface::execute() must be extended to include the
new function names with the proper prototypes

3. the DAKOTA system must be recompiled and linked with the new function object files o
libraries

Various header files will have to be included in order to compile successfully, both within th
DirectFnApplicInterface class (in order for the class to recognize the new functions) and wit
the new functions themselves (in order to recognize theDakotaVariables ,
DakotaIntArray , andDakotaResponse types).

The direct function capability is new and evolving. Future work may include removal of the
dependence of user-supplied routines on DAKOTA objects by replacing the objects with mo
fundamental data structures (vectors of ints and doubles), and installation of the “builder pa
(see [Gamma, E., Helm, R., Johnson, R., and Vlissides, J., 1995]) for management of mult
user-supplied routines.
User’s Instructions Simulation Interfacing - The Direct Function Application Interface 80

h of the

tion

nse
 the
any
” for
es
.,
red,
,
an the
the
lems
ing
iece

tem
,
ound
3-piece Interface

In the 3-piece case, the parameters to responses mapping occurs in 3 separate steps. Eac
functions identified by theinput_filter , analysis_driver , andoutput_filter
specifications will be invoked in succession.

1-piece Interface

If the analysis_driver specified in the interface section is to perform the complete
parameters to responses mapping and no additional filters are needed, then only one func
invocation will occur. This 1-piece interface is accomplished through the use of the
“NO_FILTER” option (the default) in theinput_filter andoutput_filter
specifications.

The System Call Application Interface

The system call approach invokes a simulation code or simulation driver by using thesystem
function from the C standard library ([Kernighan, B.W., and Ritchie, D.M., 1988]) to create a
new process. This new process communicates with DAKOTA through parameter and respo
files. The system call approach eliminates the need to modify simulation source code since
simulation can be initiated via its standard invocation procedure and then coordinated with
variety of tools for pre- and post-processing. The simulation can be viewed as a “black box
which the filter programs provide the communication links and the parameters and respons
files provide the communication data. This approach has been widely used in [Eldred, M.S
Hart, W.E., Bohnhoff, W.J., Romero, V.J., Hutchinson, S.A., and Salinger, A.G., 1996], [Eld
M.S., Outka, D.E., Bohnhoff, W.J., Witkowski, W.R., Romero, V.J., Ponslet, E.R., and Chen
K.S., 1996], and many others. The system call approach involves more process overhead th
direct function approach; however, this is most often of very little significance compared to
expense of the simulations. Lastly, the system call approach can suffer from precision prob
if care is not taken to preserve data precision in parameter and response file I/O. The follow
sections describe system call functionality for the cases of separate filter programs (the 3-p
interface) and no filter programs (the 1-piece interface).

3-piece Interface

The syntax of the system call that Dakota performs for a 3-piece interface is
(ifilter_name params.in; analysis_driver_name; ofilter_name

results.out)

in which the input filter, analysis, and output filter processes are combined into a single sys
call through the use of semi-colons and parentheses (see [Anderson, G., and Anderson, P.
1986]). This single system call is equivalent to 3 separate system calls; however, they are b
User’s Instructions Simulation Interfacing - The System Call Application Interface 81

put
mes

es
s

ess will

 the

and

ell as
ser to

avior
ver,

e
file
together to simplify asynchronous process management (test and receive synchronization
operations).

The input filter is passed the name of the parameters file on the command line and the out
filter is likewise passed the name of the results file on the command line. By passing the na
of files on the command lines of executable programs, Dakota can communicate with these
executables using unique and/or tagged file names (e.g., UNIX temporary files or root nam
tagged with function evaluation number). Having the option of using unique file names allow
for multiple simultaneous simulations running in a common disk space.

1-piece Interface

If the analysis_driver specified in the interface section is to perform the complete
parameters to responses mapping and no additional filters are needed, then only one proc
appear in the system call. This 1-piece interface is accomplished through the use of the
“NO_FILTER” option (the default) in theinput_filter andoutput_filter
specifications.

The system call syntax is:
(analysis_driver_name params.in results.out)

Since there are no filters, the names of the parameters and results files are both passed on
command line to theanalysis_driver .

Additional Features

This section describes interfacing options for file saving, file tagging, Unix temporary files,
common filtering operations. For details on specification of these options, refer to Interface
Commands on page 127. When executing DAKOTA, the actual system calls performed as w
informational messages on file renaming or removal are echoed to stdout in order for the u
verify proper operation of the software.

File saving

Thefile_save option in the interface specification allows the user to control whether
parameters and results files are retained or removed from the working directory. Default beh
is to remove files once their use is complete in order to declutter working directories. Howe
by specifyingfile_save in the interface specification, these files will not be removed. This
latter behavior is often useful for debugging communication between Dakota and simulator
programs.

File tagging

Thefile_tag option in the interface specification allows the user to make the names of th
parameters and results files unique by appending a function evaluation number to the root
User’s Instructions Simulation Interfacing - The System Call Application Interface 82

er to
mes,

most
ince it
tions

ut
he

line.

red.

mon
.
ide
g

ble
me.
names specified in theparameters_file andresults_file specifications. Default
behavior is to not tag these files. The default behavior has the advantage of allowing the us
ignore command line argument passing and always read and write to/from the same file na
but has the disadvantage that nonunique file names may be overwritten from one function
evaluation to the next. On the other hand, by specifyingfile_tag in the interface
specification, these files become unique through the appended evaluation number. This is
often used when multiple simultaneous simulations are running in a common disk space, s
becomes necessary to prevent conflicts (file overwriting) between the simultaneous simula
by uniquely identifying files according to their evaluation number.Special case:When
file_save is used withoutfile_tag , untagged files are used in the function evaluation b
are then moved to tagged file names after the function evaluation is complete (and before t
next evaluation starts) in order to prevent overwriting files for which afile_save request has
been given.

Unix temporary files

If parameters_file andresults_file are not included in the interface specification,
then the default mechanisms for file communication are Unix temporary files (e.g.,/usr/tmp/
aaaa08861). These files have unique names as created by thetmpnam utility from the C
standard library ([Kernighan, B.W., and Ritchie, D.M., 1988]). This uniqueness makes it a
requirement for the user’s interface to retrieve the names of these files from the command
File tagging is unnecessary with Unix temporary files (since they are already unique); thus,
file_tag requests will be ignored.file_save requests will be honored, although this
option is not recommended for the purpose of keeping the temporary file directory unclutte

Common filtering operations

A mechanism has been constructed for the implementation of common/generic filtering
operations which are relatively application-independent. By providing mechanisms for com
I/O filtering operations, the work in developing filters for new applications can be minimized
Examples of common filtering operations include design variable linking on the input filter s
and filtering of noisy response time histories on the output filter side. These common filterin
operations comprise a second level of filtering implemented externally to the inner layer of
application-specific filtering. This additional filtering layer is encapsulated in the
ApplicationInterface class and is currently inactive. That is, it is a placeholder for future
extensions.

Examples

The NO_FILTER option

In a 1-piece interface (the NO_FILTER option), the user provides a single script or executa
that accepts two command-line arguments: a parameters file name and a responses file na
User’s Instructions Simulation Interfacing - The System Call Application Interface 83

ses file.

,

ce the
ve the
 C-shell

is
ames
 the

ed
. In

nd
. The

put file
This executable must read the parameters file and write the appropriate data to the respon
If a user creates a script/executable named “my_analysis” (the name of the
analysis_driver), selects “params.in” as theparameters_file name and “results.out”
as theresults_file name, and employs the defaults of no file saving and no file tagging
then system calls with the following syntax will be spawned by Dakota:

(my_analysis params.in results.out)

If file_tag is requested, system calls like the following will be used:
(my_analysis params.in.1 results.out.1)

If UNIX temporary files are used (noparameters_file or results_file specification),
system calls like the following will be used:

(my_analysis /usr/tmp/aaaa20305 /usr/tmp/baaa20305)

In the first of these three cases, the user need not retrieve the command line arguments sin
same file names will be employed each time. With the latter two cases, the user must retrie
command line arguments since the file names change on each evaluation. In the case of a
script, the two command line arguments are retrieved using$argv[1] and$argv[2] (see
[Anderson, G., and Anderson, P., 1986]). In the case of a C or C++ program, command line
arguments are retrieved usingargc (argument count) andargv (argument vector) [Kernighan,
B.W., and Ritchie, D.M., 1988]. Fortran 77 does not support command line arguments; in th
case, a shell script wrapper can be built around the Fortran program to handle unique file n
(by, for example, creating a tagged working directory for the Fortran simulation and moving
unique file name to a hardwired file name within the working directory).

If file_save is not set, a file remove notification will follow the system call echo, e.g.:
Removing /usr/tmp/aaaa20305 and /usr/tmp/baaa20305

If nonunique file names are to be saved (file_save is set without eitherfile_tag being set
or UNIX temporary files being used), then these files will be saved by moving them to tagg
files after the evaluation is complete to prevent overwriting them on subsequent evaluations
this case, the following notification is echoed:

Files with nonunique names will be tagged to enable
file_save:

Moving params.in to params.in.1
Moving results.out to results.out.1

The named filter option

In a 3-piece interface (the named filter option), the user chooses to create separate input a
output filters that perform the data translations between Dakota and the simulator program
input filter translates a standard Dakota parameters file into an analysis code input file, the
simulator runs and produces data, and then the output filter translates the analysis code out
or database into a standard Dakota results file. If a user is employing ananalysis_driver
named “my_analysis,” aninput_filter named “my_ifilter,” anoutput_filter named
“my_ofilter,” selects “params.in” as theparameters_file name and “results.out” as the
User’s Instructions Simulation Interfacing - The System Call Application Interface 84

ne

t of

r’s
O

t
dard
results_file name, and employs the defaults of no file saving and no file tagging, then
system calls with the following syntax will be spawned by Dakota:

(my_ifilter params.in; my_analysis; my_ofilter results.out)

If file_tag is requested, system calls like the following will be used:
(my_ifilter params.in.1; my_analysis; my_ofilter

results.out.1)

If UNIX temporary files are used (noparameters_file or results_file specification),
system calls like the following will be used:

(my_ifilter /usr/tmp/aaaa22490; my_analysis; my_ofilter /
usr/tmp/baaa22490)

Similar to the 1-piece case, the user’s input and output filters must retrieve the command li
arguments in the latter two of the three cases above since the file names change on each
evaluation. Identical to the 1-piece case, omitting thefile_save flag will result in the
following action

Removing /usr/tmp/aaaa22490 and /usr/tmp/baaa22490

and use offile_save with nonunique file names will result in actions of this type:
Files with nonunique names will be tagged to enable

file_save:
Moving params.in to params.in.1
Moving results.out to results.out.1

DAKOTA File Data Formats

The central purpose of simulation interfaces is the mapping of a set of parameters into a se
responses. DAKOTA uses its own format for this data input/output within interfaces which
employfile transfer of data (i.e., the system call application interface). Depending on the use
interface specification, DAKOTA will write the parameters file in either standard or APREPR
format. The latter option simplifies model parameterization using the APREPRO utility
([Sjaardema, G.D., 1992]). For the results file, only one format is supported.

Parameters file format (standard)

Prior to invoking an interface, DAKOTA creates a parameters file which contains the curren
parameter values and a set of function requests. This parameters file has the following stan
format:
User’s Instructions Simulation Interfacing - The System Call Application Interface 85

(

tor

,
to a
t

re
ult

on
Figure 20 Parameters file data format, standard option

where “<int> ” denotes an integer value, “<double> ” denotes a double precision value, and
“ ... ” indicates omitted lines for brevity. The first line specifies the total number of variablesn)
with its identifier string “variables” followed by the number of functions (m) with its identifier
string “functions.” These integers are useful for dynamic memory allocation within a simula
or filter program. The nextn lines specify the current values and descriptors of all of the
variables within the parameter set in the following order: continuous design, discrete design
uncertain, continuous state, and discrete state variables. The lengths of these vectors add
total ofn (that is,ncdv +nddv +nuv+ncsv +ndsv =n). If any of the variable types are not presen

in the problem, then its block is omitted entirely from the parameters file. The descriptors a
those specified in the user’s Dakota input file, or if no descriptors have been specified, defa
descriptors are used. The nextmlines specify the request vector for each of themfunctions in the
response data set. These integer codes indicate what data is required on the current functi
evaluation. Integer values of 0 through 7 denote a 3-bit binary representation of all possible

Descriptive header

Continuous design vars.
(ncdv values and tags)

Discrete design vars.
(nddv values and tags)

Uncertain vars.

Continuous state vars.
(ncsv values and tags)

Discrete state vars.
(ndsv values and tags)

Active set vector

(nuv values and tags)

(m values and tags)

<int> variables <int> functions

<double> <var_tag_cdv1>

<double> <var_tag_cdv2>

...

<double> <var_tag_cdvn>

<int> <var_tag_ddv1>

<int> <var_tag_ddv2>

...

<int> <var_tag_ddvn>

<double> <var_tag_uv1>

<double> <var_tag_uv2>

...

<double> <var_tag_uvn>

<double> <var_tag_csv1>

<double> <var_tag_csv2>

...

<double> <var_tag_csvn>

<int> <var_tag_dsv1>

<int> <var_tag_dsv2>

...

<int> <var_tag_dsvn>

<int> <asv_tag_1>

<int> <asv_tag_2>

...

<int> <asv_tag_m>
User’s Instructions Simulation Interfacing - The System Call Application Interface 86

st
ficant

that is
shing

s in the
in
combinations of value, gradient, and Hessian requests for a particular function, with the mo
significant bit denoting the Hessian, the middle bit denoting the gradient, and the least signi
bit denoting the value. The specific translations are shown in Table 8.

This request vector accomplishes two operations: (1) it manages the type of function data
needed, and (2) it implements the active set strategy by providing a mechanism for distingui
between active and inactive functions.

Parameters file format (APREPRO)

For the APREPRO format option, the same data is present and the same ordering is used a
standard format. The difference is that numerical values are associated with their tags with$$
{ tag = value } constructs as shown in Figure 21:

Table 8 Request vector codes

Integer
Code

Binary
representation

Meaning

7 111 Get Hessian, gradient, and value

6 110 Get Hessian and gradient

5 101 Get Hessian and value

4 100 Get Hessian

3 011 Get gradient and value

2 010 Get gradient

1 001 Get value

0 000 Get nothing, function is inactive
User’s Instructions Simulation Interfacing - The System Call Application Interface 87

lude
an

quests.
Figure 21 Parameters file data format, APREPRO option

When a parameters file in APREPRO format is included within a template file (using an inc
directive), the APREPRO utility recognizes these constructs as variable definitions which c
then be used to populate targets throughout the template file.

Results file format

After completion of the interfacing processes, DAKOTA expects to read a file containing
response data for the current set of parameters and corresponding to the set of function re
This data must be in the following format:

Descriptive header

Continuous design vars.
(ncdv values and tags)

Discrete design vars.
(nddv values and tags)

Uncertain vars.

Continuous state vars.
(ncsv values and tags)

Discrete state vars.
(ndsv values and tags)

Active set vector

(nuv values and tags)

(m values and tags)

$$ { DAKOTA_VARS = <int> }
$$ { DAKOTA_FNS = <int> }
$$ { <var_tag_cdv1> = <double> }
$$ { <var_tag_cdv2> = <double> }
...
$$ { <var_tag_cdvn> = <double> }
$$ { <var_tag_ddv1> = <int> }
$$ { <var_tag_ddv2> = <int> }
...
$$ { <var_tag_ddvn> = <int> }
$$ { <var_tag_uv1> = <double> }
$$ { <var_tag_uv2> = <double> }
...
$$ { <var_tag_uvn> = <double> }
$$ { <var_tag_csv1> = <double> }
$$ { <var_tag_csv2> = <double> }
...
$$ { <var_tag_csvn> = <double> }
$$ { <var_tag_dsv1> = <int> }
$$ { <var_tag_dsv2> = <int> }
...
$$ { <var_tag_dsvn> = <int> }
$$ { ASV_1 = <int> }
$$ { ASV_2 = <int> }
...
$$ { ASV_M = <int> }
User’s Instructions Simulation Interfacing - The System Call Application Interface 88

of
e no
t
eters
A’s
al data
space
use

is

ets from

t,
e
ith a

ral

ables

tives
es
Figure 22 Results file data format

The first block of data is the function values that have been requested, followed by a block
requested gradient data, followed by a block of requested Hessian data. Function data hav
bracket delimiters and 1 character tag per function can beoptionally supplied. These tags are no
used by DAKOTA and are only included as an optional field for consistency with the param
file format and for backwards compatibility. The tags are rendered optional through DAKOT
use of regular expression pattern matching to detect whether an upcoming field is numeric
or a tag. If character tags are used, then they must be separated from data by either white
or new line characters and there must not be any white space within a character tag (e.g.,
“variable_1,” not “variable 1”).

Function gradient vectors are delimited with single brackets [...ngrad -vector of doubles...]. Tags

are not used and must not be present. White space separating the brackets from the data
optional.

Function Hessian matrices are delimited with double brackets [[... matrix of

doubles...]]. Tags are not used and must not be present. White space separating the brack
the data is optional, although white space must not appear between the double brackets.

DAKOTA will read the data in three passes, getting the set of requested function values firs
followed by the requested set of gradients, followed by the requested set of Hessians. If th
amount of data in the file does not match the function request vector, DAKOTA will abort w
response recovery format error message.

An important question for proper management of both gradient and Hessian data is: if seve
different types of variables are used,for which variables are function derivatives needed? That
is, how isngrad determined? Derivatives are never needed with respect to any discrete vari

(since these derivatives do not exist) and the types of continuous variables for which deriva
are needed depend on the type of study being performed. For optimization and least squar
problems, function derivatives are only needed with respect to thecontinuous design variables
(ngrad =ncdv) since this is the information used by the optimizer in computing a search

Requested function

Requested gradient

Requested Hessian

<double> <fn_tag_1>
<double> <fn_tag_2>
...
<double> <fn_tag_m>
[<double> <double> ... <double>]
[<double> <double> ... <double>]
...
[<double> <double> ... <double>]
[[<double> <double> ... <double>]]
[[<double> <double> ... <double>]]
...
[[<double> <double> ... <double>]]

values (optional tags)

vectors (no tags)

matrices (no tags)

ngrad ngrad×
User’s Instructions Simulation Interfacing - The System Call Application Interface 89

an

ion

on

 the

l

ion).
 set

 each

rse,
ncy
See
 for a

d the
nt and
tors if
 (
ints
 and
direction. Similarly, for nondeterministic analysis methods which use gradient and/or Hessi
information, function derivatives are only needed with respect to theuncertain variables
(ngrad =nuv). And lastly, parameter study methods which are cataloguing gradient and/or

Hessian information do not draw a distinction among continuous variables; therefore, funct
derivatives must be supplied with respect toall continuous variables that are specified
(ngrad =ncdv +nuv+ncsv). This is generally not as complicated as it sounds, since it is comm

for optimization and least squares problems to only specify design variables and for
nondeterministic analysis problems to only specify uncertain variables. DAKOTA allows for
specification of additional types of variables in these cases and DAKOTA will map these
additional variables through the interface, but since they will not be used in the internal
computations of the iterator, the derivatives of the function set with respect to the additiona
variables are not needed.

Active set vector control

A future capability will be the option to turn the ASV controlon or off (currently,
dakota.input.spec has a placeholder for this capability in the responses keyword sect
ASV control set toon is the default operation as described previously, whereas ASV control
to off will cause Dakota to always request a “full” data set (the full function, gradient, and
Hessian data that is available in the problem as specified in the responses specification) on
function evaluation. This latter case will allow the user to simplify the supplied interface by
removing the need to check the content of the active set vector on each evaluation. Of cou
this will be most appropriate for those cases in which only a relatively small penalty in efficie
occurs when returning more data than may be needed on a particular function evaluation.
Active Set Vector Usage on page 143 in the Responses section of the Commands chapter
more detailed description.

Examples

Shown are several examples of parameters files and their corresponding results files.

A typical input file for 2 variables (n = 2) and 3 functions (m = 3) is as follows:
2 variables 3 functions
1.5000000000e+00 cdv_1
1.5000000000e+00 cdv_2

1 ASV_1
1 ASV_2
1 ASV_3

The number of design variables (n) and the string “variables” are followed by the number of
functions (m) and the string “functions”, the values of the design variables and their tags, an
active set vector (ASV) and its tags. The descriptive tags for the variables are always prese
they are either the descriptors specified in the user’s dakota input file or are default descrip
none were provided. The length of the active set vector is equal to the number of functionsm).
In the case of an optimization data set with an objective function and two nonlinear constra
(three response functions total), the first ASV value is associated with the objective function
User’s Instructions Simulation Interfacing - The System Call Application Interface 90

en

-

 case,

ASV
the remaining two are associated with the constraints (in whatever consistent order has be
defined by the user).

For the APREPRO format option, the same set of data appears as follows:
$$ { DAKOTA_VARS = 2 }
$$ { DAKOTA_FNS = 3 }
$$ { cdv_1 = 1.5000000000e+00 }
$$ { cdv_2 = 1.5000000000e+00 }
$$ { ASV_1 = 1 }
$$ { ASV_2 = 1 }
$$ { ASV_3 = 1 }

where the numerical values are associated with their tags within$${ tag = value }
constructs.

The user-supplied application interface, comprised of a simulator program and - optionally
filter programs, is responsible for reading the parameters file and writing the results file
containing the response data requested in the ASV. Since the ASV contains all ones in this
the response file corresponding to the above input file would contain values for the three
functions:

1.2500000000e-01 f
1.5000000000e+00 c1
1.7500000000e+00 c2

Since function tags are optional, the following would be equally acceptable:
1.2500000000e-01
1.5000000000e+00
1.7500000000e+00

For the same parameters with different ASV components,
2 variables 3 functions
1.5000000000e+00 cdv_1
1.5000000000e+00 cdv_2

3 ASV_1
3 ASV_2
3 ASV_3

the following response data is required:
1.2500000000e-01 f
1.5000000000e+00 c1
1.7500000000e+00 c2
[5.0000000000e-01 5.0000000000e-01]
[3.0000000000e+00 -5.0000000000e-01]
[0.0000000000e+00 3.0000000000e+00]

Here, we need not only the function values, but also each of their gradients. Modifying the
components again gives the following parameters file,

2 variables 3 functions
1.5000000000e+00 cdv_1
1.5000000000e+00 cdv_2

2 ASV_1
0 ASV_2
User’s Instructions Simulation Interfacing - The System Call Application Interface 91

 its

ng
uous

s

2 ASV_3

for which the following results file is needed:
[5.0000000000e-01 5.0000000000e-01]
[0.0000000000e+00 3.0000000000e+00]

Here, we needed gradients for functionsf andc2 , but not forc1 presumably since the
constraint is inactive.

A full Newton optimizer might well make the following request:
2 variables 1 functions
1.5000000000e+00 cdv_1
1.5000000000e+00 cdv_2

7 ASV_1

for which the following results file (containing the objective function, its gradient vector, and
Hessian matrix) is needed:

1.2500000000e-01 f
[5.0000000000e-01 5.0000000000e-01]
[[3.0000000000e+00 0.0000000000e+00 0.0000000000e+00

3.0000000000e+00]]

Lastly, a more advanced example might have multiple types of variables present:
11 variables 3 functions
1.5000000000e+00 cdv_1
1.5000000000e+00 cdv_2

2 ddv_1
2 ddv_2
2 ddv_3

3.5000000000e+00 csv_1
3.5000000000e+00 csv_2
3.5000000000e+00 csv_3
3.5000000000e+00 csv_4

4 dsv_1
4 dsv_2
3 ASV_1
3 ASV_2
3 ASV_3

In this case, the required length of the gradient vectors depends upon the type of study bei
performed. In an optimization problem, gradients are only needed with respect to the contin
design variables, in which case the following response data would be appropriate (ngrad =2):

1.2500000000e-01 f
1.5000000000e+00 c1
1.7500000000e+00 c2
[5.0000000000e-01 5.0000000000e-01]
[3.0000000000e+00 -5.0000000000e-01]
[0.0000000000e+00 3.0000000000e+00]

In a parameter study, however, no distinction is drawn between different types of continuou
variables and gradients would be needed with respect to all continuous variables (ngrad =6), e.g.:

1.2500000000e-01 f
User’s Instructions Simulation Interfacing - The System Call Application Interface 92

m

ors.
t

ay
 or
 fault
or

er
e in
1.5000000000e+00 c1
1.7500000000e+00 c2
[5.0000000000e-01 5.0000000000e-01 6.2500000000e+01

6.2500000000e+01 6.2500000000e+01 6.2500000000e+01]
[3.0000000000e+00 -5.0000000000e-01 0.0000000000e+00

0.0000000000e+00 0.0000000000e+00 0.0000000000e+00]
[0.0000000000e+00 3.0000000000e+00 0.0000000000e+00

0.0000000000e+00 0.0000000000e+00 0.0000000000e+00]

Failure capturing

DAKOTA provides the capability to manage failures in simulation codes within both its syste
call and direct application interfaces. Failure capturing consists of three operations: failure
detection, failure communication, and failure recovery.

Failure detection

Since the symptoms of a simulation failure are highly code-dependent, it is the user’s
responsibility to detect failures within theiranalysis_driver or output_filter . One
popular example of simulation monitoring is to rely on a simulation’s internal detection of err
In this case, the Unixgrep utility can be used within a user’s script to detect strings in outpu
files which indicate analysis failure. For example, the following script excerpt

grep ERROR analysis.out > /dev/null
if ($status == 0)

echo “FAIL” > results.out
endif

will pass theif test and communicate simulation failure to DAKOTA if thegrep command
finds the stringERROR anywhere in theanalysis.out file.

If the simulation code is not providing error diagnostic information, then failure detection m
require monitoring of simulation results for sanity (e.g., is the mesh distorting excessively?)
potentially monitoring for continued process existence to detect a simulation segmentation
or core dump. While this can get complicated, the flexibility of DAKOTA’s interfaces allows f
a wide variety of monitoring approaches.

Failure communication

Once a failure is detected, it must be communicated so that DAKOTA can attempt to recov
from the failure. The form of this communication depends on the type of application interfac
use.
User’s Instructions Simulation Interfacing - Failure capturing 93

 to

the
ing

e
.
.

start

OTA
ay

.
n.

an
es in
mmy
System call application interfaces

In the system call application interface case, a detected simulation failure is communicated
DAKOTA through the results file returned by the user’sanalysis_driver (1-piece interface)
or output_filter (3-piece interface). Instead of returning the standard results file data,
string “FAIL ” or “ fail ” should appear at the beginning of the results file. Any data appear
after the fail string will not be read.

Direct application interfaces

In the direct application interface case, a detected simulation failure is communicated to
DAKOTA through the return code provided by the user’sanalysis_driver (for either the 1-
piece or the 3-piece interface). Recall that the prototype for the direct interface isint
function_name(const DakotaVariables& vars, const DakotaIntArray&
asv, DakotaResponse& response) . Theint returned is the failure code: 0 (false) if no
failure occurs and 1 (true) if a failure occurs.

Failure recovery

Once the analysis failure has been communicated, DAKOTA will attempt to recover from th
failure using one of the following mechanisms, as governed by the user’s input specification
Additional details on these specifications are provided in Interface Commands on page 127

Abort

If the abort option is specified, then DAKOTA will terminate upon detecting a failure. Note
that if the problem causing the failure can be corrected, DAKOTA’s restart capability (see Re
Management on page 125) can be used to continue the study.

Retry

If the retry option is specified, then DAKOTA will reinvoke the failed simulation up to the
specified number of retries. If the simulation continues to fail on each of these retries, DAK
will terminate. The retry option is appropriate for those cases in which simulation failures m
be resulting from transient computing environment issues, such as disk space.

Recover

If the recover option is specified, then DAKOTA will not attempt the failed simulation again
Rather, it will return a “dummy” set of function values as the results of the function evaluatio
The dummy function values to be returned are specified by the user. Any gradient or Hessi
data requested in the active set vector will be zero. This option is appropriate for those cas
which a failed simulation may indicate a region of the design space to be avoided and the du
values can be used to return a large objective function or a constraint violation which will
discourage an optimizer from further investigating the region.
User’s Instructions Simulation Interfacing - Failure capturing 94

on
used
d into
 next
all to

t) and
l a
e last

A

is
A

using
ata
n to

ot

etic
the
utions
ified

ods,

 be
ation
Continuation

If the continuation option is specified, then DAKOTA will attempt to step towards the
failing “target” simulation from a nearby “source” simulation through the use of a continuati
algorithm. This option is appropriate for those cases in which a failed simulation may be ca
by an inadequate initial guess. If the “distance” between the source and target can be divide
smaller steps in which information from one step provides an adequate initial guess for the
step, then the continuation method can step towards the target in increments sufficiently sm
allow for convergence of the simulations.

When the failure occurs, the interval between the last successful evaluation (the source poin
the current target point is halved and the evaluation is retried. This halving is repeated unti
successful evaluation occurs. The algorithm then marches towards the target point using th
interval as a step size. If a failure occurs while marching forward, the interval will be halved
again. Each invocation of the continuation algorithm is allowed a total of ten failures (ten
halvings result in up to 1024 evaluations from source to target) prior to aborting the DAKOT
process.

While DAKOTA manages the interval halving and function evaluation invocations, the user
responsible for managing the initial guess for the simulation program. For example, in GOM
([Schunk, P.R., Sackinger, P.A., Rao, R.R., Chen, K.S., Cairncross, R.A., 1995]), the user
specifies the files to be used for reading initial guess data and writing solution data. When
the last successful evaluation in the continuation algorithm, the translation of initial guess d
can be accomplished by simply copying the solution data file leftover from the last evaluatio
the initial guess file for the current evaluation (and in fact this is useful for all evaluations, n
just continuation). However, techniques are under development for use of theclosest, previously
successful, function evaluation (rather than thelast successful evaluation) as the source point in
the continuation algorithm. This will be especially important for nonlocal methods (e.g., gen
algorithms) in which the last successful evaluation may not necessarily be in the vicinity of
current evaluation. This approach will require the user to save and manipulate previous sol
(likely tagged with evaluation number) so that the results from a particular simulation (spec
by DAKOTA after internal identification of the closest point) can be used as the current
simulation’s initial guess.

The Approximation Interface

TheApproximationInterface branch (see Figure 18) implements a variety of approximation
techniques which can be used as surrogates in place of actual simulations. TheANN, RSM, and
MARS approximation interfaces implement artificial neural networks, response surface meth
and multivariate adaptive regression splines, respectively. In addition, anMPA approximation
interface is planned for implementing multipoint approximations. These approximations can
used on their own for direct interfacing with any iterator or as part of a sequential approxim
strategy (see Sequential Approximate Optimization on page 74).
User’s Instructions Simulation Interfacing - The Approximation Interface 95

e
ith

s

al

s) of
ction
ough

e
.H.,

odel.
e
sess
ence
ate

est
 to
is
t

The primary goal in surrogate-based optimization is the reduction of computational expens
through the minimization of the number of function evaluations that need to be performed w
the actual expensive model.

All of the approximation interfaces define methods for building an initial approximation (the
build_approximation virtual function), updating the approximation with new data point
(theupdate_approximation virtual function), modifying the form or extent of the
approximation (themodify_approximation virtual function), and performing a function
evaluation using the approximation (themap virtual function).

Building an approximation

Building an initial approximation consists of selecting a set of trial points, performing the tri
function evaluations on the actual model, and then using the results of the trial function
evaluations to solve for the coefficients (e.g., polynomial coefficients, neural network weight
the approximation. If there are multiple functions in the response set (e.g., an objective fun
plus one or more constraints), then a separate approximation is built for each function, alth

each approximation uses the response data from the same trial points. Currently, only 0th-order
information (function values) from the actual model is used in building the approximation,
although extensions to using higher-order information (function gradients and Hessians) ar
possible. In DAKOTA, the set of trial points is determined via the DDACE package ([Tong, C
and Meza, J.C., 1997]) for design and analysis of computer experiments. Solution for the
approximation coefficients is performed using either LU factorization or singular value
decomposition.

Updating an approximation

An approximation can be updated whenever new information is available from the actual m
In sequential approximate optimization, for example, the best point found in an approximat
optimization cycle is evaluated with the actual model. This new information is first used to as
performance and convergence of the process. If improvement is observed and the converg
criteria have not been satisfied, then the new function evaluation information is used to upd
the approximation for the next approximate cycle. This will typically involve another
factorization or decomposition to solve for new approximation coefficients.

Modifying an approximation

It is often desirable to modify the extent of an approximation based on its performance. For
example, if the approximation is performing poorly (as measured by the evaluation of the b
point found in an approximate optimization cycle with the actual model), then it is desirable
restrict the extent (i.e., the bounds) of the approximation. Conversely, if the approximation
performing well, then it may be desirable to increase the extent of the approximation so tha
User’s Instructions Simulation Interfacing - The Approximation Interface 96

rtual
he
tion
irtual
xity

ial
f

ratic

ion

d

larger changes can occur on each cycle. DAKOTA is implementing trust region concepts to
manage the extent of approximations.

Performing function evaluations

Each of the approximation interfaces, like the application interfaces, must implement the vi
map function in order to provide a mechanism for parameter to response mapping. This is t
function invoked when an iterator requests a function evaluation. Since the function evalua
mechanisms for application and approximation interfaces are implemented within a single v
function, the particular form of the interface can be hidden from the iterator and this comple
can be encapsulated.

In the case of an approximation interface, a parameter to response mapping involves an
inexpensive evaluation of the approximation for a particular parameter set. All of the

approximations can return 0th-order information (approximate function values) and some

approximations can directly return 1st-order information (approximate function gradients) in
those cases where the approximate form is easily differentiated (e.g., a quadratic polynom
approximation). Availability of analytic gradients can improve the accuracy and efficiency o
performing a gradient-based optimization on the approximation.

The RSM Approximation Interface

The RSM Approximation Interface uses a response surface method which assumes a quad
polynomial of the form:

(7)

Following evaluation of the DDACE sample points with the actual model, the RSM
approximation coefficients (c0, ci , cij) are computed with an LU factorization.

This capability is new and evolving. Additional details will be provided in future documentat
releases.

The MARS Approximation Interface

The MARS Approximation Interface uses multivariate adaptive regression splines from the
MARS3.5 package ([Friedman, J. H., 1991]) developed at Stanford University. An object-
oriented interface to the Fortran library is provided by the DDACE package ([Tong, C.H., an
Meza, J.C., 1997]).

c 0 c i x i c ij x i x j
j 1=

n

∑
i 1=

n

∑+

i 1=

n

∑+
User’s Instructions Simulation Interfacing - The RSM Approximation Interface 97

ion

 on
n of
VD

ion
This capability is new and evolving. Additional details will be provided in future documentat
releases.

The ANN Approximation Interface

The ANN Approximation Interface uses a layered perceptron artificial neural network based
the direct training approach of Zimmerman ([Zimmerman, D.C., 1996]). Following evaluatio
the DDACE sample points with the actual model, the ANN weights are computed with an S
decomposition.

This capability is new and evolving. Additional details will be provided in future documentat
releases.
User’s Instructions Simulation Interfacing - The ANN Approximation Interface 98

n

ing

ns

ps
 of
ND).

ation
e

ry

s
re is
s
rs).

ich
l work

tion
Hart,
Exploiting Parallelism
Parallelism Introduction on page 99Enabling Software Components on page 100Direct function synchronization on page 101System call synchronization on page 101Master-slave algorithm on page 103 Single-level parallelism on page 103Multilevel parallelism on page 103Implementation of Parallelism on page 104Single-processor DAKOTA implementation on page 105Multiprocessor DAKOTA implementation on page 106Specifying Parallelism on page 107 The Model on page 107The Iterator on page 107Single-processor DAKOTA specification on page 108Multiprocessor DAKOTA specification on page 109Running a parallel DAKOTA job on page 110Single-processor DAKOTA execution on page 110Multiprocessor DAKOTA execution on page 110

Parallelism Introduction

The opportunities for exploiting parallelism in optimization can be categorized into four mai
areas:

1. Algorithmic coarse-grained parallelism: This parallelism involves the exploitation of
multiple independent function evaluations. Examples of optimization algorithms contain
coarse-grained parallelism include:
a.)Gradient-based algorithms: finite difference gradient evaluations, speculative
optimization, parallel line search, multiple-secant BFGS.
b.) Nongradient-based algorithms: genetic algorithms (GA’s), coordinate pattern search
(CPS), parallel direct search (PDS), Monte Carlo.
c.) Approximate methods: design and analysis of computer experiments (DACE) evaluatio
for building response surfaces and training neural networks.
d.) Multi-method strategies: optimization under uncertainty, branch and bound, multi-start
local search, island-model GA’s, GA’s with periodic local search.

2. Algorithmic fine-grained parallelism: This involves computing the basic computational ste
of an optimization algorithm (i.e., the internal linear algebra) in parallel. This is primarily
interest in large-scale optimization problems and simultaneous analysis and design (SA

3. Function evaluation coarse-grained parallelism: This involves simultaneous computation of
separable (i.e., uncoupled) parts of a single function evaluation, where a function evalu
may contain multiple response functions requiring multiple simulations. Examples includ
separate simulations for multiple objectives and constraint functions, multiple disciplina
analyses for MDO, etc.

4. Function evaluation fine-grained parallelism: This involves parallelization of the solution
steps within a single analysis code. Examples of Sandia-developed MP analysis codes
include PRONTO3D, COYOTE, MPSalsa, ALEGRA, PCTH, SIERRA, etc.

In both the algorithmic and function evaluation cases, coarse-grained parallelization require
very little inter-processor communication and is therefore essentially “free,” meaning that the
little loss in parallel efficiency due to communication as the number of processors increase
(assuming that there are enough separable computations to utilize the additional processo
Fine-grained parallelism, on the other hand, involves much more communication among
processors and care must be taken to avoid the case of inefficient machine utilization in wh
the communication demands among processors outstrip the amount of actual computationa
to be performed.

Single-level approaches which exploit either algorithmic coarse-grained parallelism or func
evaluation fine-grained parallelism have been investigated in previous work ([Eldred, M.S.,
User’s Instructions Exploiting Parallelism - Parallelism Introduction 99

en

ses is

ions

the
n

ith
 the

is

ssors
501
ferable
wever,

le not

and

gress

e

.

 at a

ly,
W.E., Bohnhoff, W.J., Romero, V.J., Hutchinson, S.A., and Salinger, A.G., 1996]). It has be
shown that optimization approaches which utilize single-level parallelism can have clear
performance barriers. Parallel optimization of single-processor simulations is limited by the
number of independent evaluations per cycle, and sequential optimization of parallel analy
limited by the practical limit on processors that can be used for a single parallel simulation
before inter-process communication dominates actual computational work. These observat
point clearly to the need for multilevel parallelism, in which parallel optimization strategies
coordinate multiple simultaneous simulations of multiprocessor codes.

The question arises, then, if multiple types of parallelism can be exploited, how should the
amount of parallelism at each level be selected so as to maximize the parallel efficiency of
study? This question is answered in [Eldred, M.S., and Hart, W.E., 1998] in which it is show
that maximum parallel efficiency is achieved in multilevel parallelism when the minimum
number of processors is used for the fine-grained parallelism of a given parallel analysis (w
the rare exception of a parallel analysis with superlinear speedup). This gives preference to
coarse-grained parallelism in multilevel parallel studies. However, maximum efficiency and
minimum turn-around time are not equivalent, and in practice, it is common to sacrifice
efficiency for speed and increase the number of processors used for a given parallel analys
beyond the minimum required. For example, if an algorithm has 10 independent function
evaluations per cycle and each of these function evaluations needs a minimum of 50 proce
to perform the simulation, then high parallel efficiency can be achieved by dividing a total of
processors into ten 50-processor slave servers plus a master processor. This would be pre
to five 100-processor slave servers and far preferable to one 500-processor slave server. Ho
increasing to a total of 1001 processors and selecting 10 100-processor slave servers, whi
having as high a parallel efficiency, might be desirable in practice in order to minimize turn-
around time.

The following discussions describe how to manage algorithmic coarse-grained parallelism
function evaluation fine-grained parallelism within the DAKOTA framework. The remaining
types (algorithmic fine-grained and function evaluation coarse-grained parallelism) are not
currently supported, although [Eldred, M.S., and Schimel, B.D., 1999] describes recent pro
in these directions. The software components which enable parallelism are discussed first,
followed by descriptions of approaches for utilizing these components in implementing
parallelism within a variety of scenarios. Finally, input specification and execution details ar
provided for running parallel DAKOTA studies.

Enabling Software Components

This section describes software components which enable parallelism in a variety of forms
Direct function and system call interfacing capabilities have the flexibility to initiate function
evaluations either synchronously or asynchronously. Synchronous evaluations proceed one
time with the evaluation running to completion before control is returned to DAKOTA.
Asynchronous evaluations are initiated such that control is returned to DAKOTA immediate
User’s Instructions Exploiting Parallelism - Enabling Software Components 100

ns.

A
thm

e

bility

edure
he

plish
ode
 An

age

call
ed
below)
e

prior to evaluation completion, thereby allowing the initiation of multiple concurrent evaluatio
The synchronization capabilities can be used by themselves to provide a simple parallelism
which relies on external means to assign jobs to processors (see Single-processor DAKOT
implementation on page 105), or they can be combined with DAKOTA’s master-slave algori
to provide a sophisticated self-contained parallelism (see Multiprocessor DAKOTA
implementation on page 106).

Direct function synchronization

The direct function capability, described in detail in The Direct Function Application Interfac
on page 80, is used to invoke simulation codes which are linked directly into the DAKOTA
executable or to invoke internal test functions for algorithm performance testing. This capa
may be used synchronously or asynchronously:

Synchronous

Synchronous operation of the direct function application interface involves a standard proc
call to a simulation linked within the code. Control does not return to the calling code until t
simulation is completed and the response object has been populated.

Asynchronous

Asynchronous operation involves the use of multithreading (e.g., POSIX threads) to accom
multiple simultaneous simulations. When spawning a thread, control returns to the calling c
after the simulation is initiated. In this way, multiple threads can be created simultaneously.
array of responses corresponding to the multiple threads of execution is recovered in a
synchronize operation.

System call synchronization

The system call approach, described in detail in The System Call Application Interface on p
81, invokes a simulation code or simulation driver by using thesystem function from the C
standard library to create a new process. This capability may be used synchronously or
asynchronously:

Synchronous

Synchronous operation of the system call application interface involves spawning the system
in the foreground. Control does not return to the calling code until the simulation is complet
and the response file has been written. In this case, the possibility of a race condition (see
does not exist and any errors during response recovery will cause an immediate abort of th
DAKOTA process.
User’s Instructions Exploiting Parallelism - Enabling Software Components 101

ith
on,
m

the

ce

lem,
lures
, so
he
s,

(1)
of the
tions

ts files
ther
rs and
ary

rrent
s
ms on

eds to

dle
 can
Asynchronous

Asynchronous operation involves spawning the system call in the background, continuing w
other tasks (e.g., other simulation system calls), periodically checking for process completi
and finally retrieving the results. An array of responses corresponding to the multiple syste
calls is recovered in a synchronize operation.

In this synchronize operation, completion of a function evaluation is detected by testing for
existence of the evaluation’s results file using thestat utility (see [Kernighan, B.W., and
Ritchie, D.M., 1988]). Care must be taken when using this facility since it is prone to the ra
condition in which the results file passes the existence test but the recording of the function
evaluation results in the file is incomplete. In this case, the read operation performed by
DAKOTA will result in an error due to this incomplete data set. In order to address this prob
DAKOTA contains exception handling which allows for a fixed number of response read fai
per asynchronous system call evaluation. The number of allowed failures must have a limit
that an actual response format error (unrelated to the race condition) will eventually abort t
system. Therefore, to reduce the possibility of exceeding the limit on allowable read failurethe
user’s interface should minimize the amount of time an incomplete results file exists in the
directory where its status is being tested. This can be accomplished through two approaches:
delay the creation of the results file until the simulation computations are complete and all
response data is ready to be written to the results file, or (2) perform the simulation computa
in a subdirectory, and as a last step, move the completed results file into the main working
directory where its existence is being queried.

If concurrent simulations are executing in a shared disk space, then care must be taken to
maintain independence of the concurrent analyses. In particular, the parameters and resul
for a simulation, as well as any other files used by the simulation, must be protected from o
files of the same name used by other concurrent simulations. With respect to the paramete
results files, these files may be made unique through the use of file tagging or Unix tempor
files (see Additional Features on page 82). However, if additional simulation files must be
protected, then it will usually be necessary to create a working subdirectory for each concu
simulation. For example, if the only files used by a simulator are the files from which it read
parameters and to which it writes results (e.g., the simple test problems in Example Proble
page 328), then it is sufficient to use either thefile_tag option (params.in.1 ,
results.out.1 , etc.) or the default Unix temporary file option (/var/tmp/aaa0b2Mfv ,
etc.) to maintain independence between concurrent simulations. If, however, a simulator ne
use additional files for input, run diagnostics, and results databases (e.g.,model.i , model.o ,
model.g , model.e , etc., for many SEACAS codes), then one could extract DAKOTA’s
number designators and use them to tag all the other files (assuming the simulator can han
modified filenames), or preferably, create a tagged working directory in which the simulator
execute in default mode. An example of this preferred approach is given in Figure 9 in the
Tutorial on page 19.
User’s Instructions Exploiting Parallelism - Enabling Software Components 102

 S.,

ich is
ations.
d pass,
bs; the
t the

r
MD
tware

ision
tegy
the slave
rent
e master
rrent
l.
of data

es.

llel

ion
on
ver is

s
ese
nal

ic
f the
Master-slave algorithm

DAKOTA contains a master-slave algorithm which self-schedules function evaluations in a
“single program-multiple data” (SPMD) parallel programming model. It uses MPI message-
passing ([Gropp, W., Lusk, E., and Skjellum, A., 1994], [Snir, M., Otto, S., Huss-Lederman,
Walker, D., and Dongarra, J., 1996]) to communicate data between processors. The self-
scheduling design (also known as a task pool design) provides a simple load balancing wh
particularly useful in the case of heterogeneous processor speeds or varying simulation dur
In the first pass, the self-scheduling algorithm assigns each slave server a job. In the secon
the master schedules the remaining jobs on slave servers as they complete their previous jo
first server to return its results gets the next job. The SPMD designation simply denotes tha
same DAKOTA executable is loaded on all processors. This differs from the MPMD model
(“multiple program-multiple data”) which would have the DAKOTA executable on the maste
processor communicating directly with simulator executables on slave processors. The MP
model has some advantages, but it is not currently allowable by the executable loading sof
(i.e.,yod) on Sandia’s MP machines.
Developer’s notes:Implementing the master-slave model within a single executable (SPMD model) entails a div
of iterator code (master) from function evaluation code (slave). This is accomplished within DAKOTA at the stra
layer. In the strategy constructor, the master processor instantiates the required iterators and models whereas
processors instantiate only the required models. When the strategy is executed, the master executes the cur
iterator and sends analysis requests to the slaves which run server code bound to the current model. When th
completes iteration on the current model, it sends a termination message to the slaves which then exit the cu
model. If additional work remains within the strategy, then the process repeats for the next iterator and mode
Additional features include: (1) the use of buffer packing which allows for send/receive of a heterogeneous set
within a single message and thereby minimizes message traffic, and (2) use of aParallelLibrary class hierarchy
which encapsulates the specific syntax of message passing operations for particular message passing librari

Single-level parallelism

DAKOTA uses MPI communicators to identify groups of processors. In the single-level para
case employing many single-processor slave servers, the global MPI communicator
(MPI_COMM_WORLD) can directly provide the context needed for master-slave communicat
since processor rank withinMPI_COMM_WORLD is sufficient for message source and destinati
information. The other single-level parallel case of employing one multi-processor slave ser
treated identically to the multilevel parallel case described below.

Multilevel parallelism

For multilevel parallelism,MPI_COMM_WORLDcan be partitioned into new intra-communicator
which delineate the set of processors to be used for each multiprocessor analysis. Since th
intra-communicators can be passed into a simulation for use as the simulation’s computatio
context, the use of communicators enables the analysis routines to be provided as a gener
library utility that can be run on an arbitrary set of processors (which was one of the goals o
MPI standard). Within DAKOTA, new intra-communicators are created with the
MPI_Comm_split routine. In order for the master to send messages to the new intra-
communicators, inter-communicators are created with calls toMPI_Intercomm_create .
User’s Instructions Exploiting Parallelism - Enabling Software Components 103

e

level

 model

ent-
g
n a

.
nt

figured

 the
call
e any

two
ns to

the
Once the new communicators are created, the single-level and multilevel algorithms for
scheduling jobs from the master are virtually identical (in fact, the single-level case could b
handled as a special case of the multilevel case, but the DAKOTA design opted to maintain
separate logic and avoid the overhead of additional communicator creations for the single-
case). In addition, communicator partitions can be reallocated multiple times. This enables
dynamic repartitioning ofMPI_COMM_WORLD for each simulation interface within a strategy
that manages multiple models (e.g., four 256 processor servers could be used for a coarse
followed by two 512 processor servers for subsequent iteration on a fine model). This is
conveniently managed by allocating and deallocating particular communicator partitioning
schemes within the iterator/model loops of the strategy layer.

Pending Extensions

Recent work has focused on the development of concurrent-iterator strategies and concurr
analysis function evaluations (refer to [Eldred, M.S., and Schimel, B.D., 1999]) for exploitin
additional coarse-grained parallelism within optimization studies. These extensions result i
total of three nested tiers of master-slave control and four levels of parallelism which can
minimize efficiency losses and achieve near linear scaling on massively parallel computers
These capabilities will be available in the DAKOTA V1.2 release and will allow the convenie
selection and combination of each type of parallelism a particular application supports:

• Concurrent iterators within a strategy

• Concurrent function evaluations within an iterator

• Concurrent analyses within a function evaluation

• Multiprocessor analyses

Implementation of Parallelism

This section describes how the software components which enable parallelism can be con
to perform particular parallel studies. An essential feature for enabling a variety of parallel
processing scenarios is the independence of the Master-slave algorithm on page 103 from
interfacing software described in Direct function synchronization on page 101 and System
synchronization on page 101. Since they are independent, the master-slave code can utiliz
of the available interfacing capabilities, or alternatively, any of the available interfacing
capabilities can be employed with or without the master-slave approach.

The approaches to exploiting parallelism which this flexibility allows can be categorized into
main areas: those in which DAKOTA runs on a single processor and relies on external mea
distribute simulations to remote processors (the master-slave approach isnot used), and those in
which DAKOTA runs in parallel coordinating simulations within its allocation of processors (
master-slave approachis used).
User’s Instructions Exploiting Parallelism - Implementation of Parallelism 104

elism
slave
e

y
 load
) or
nction

pute
age
hile it

hich

ript
 the

of

as the

TA
lations
o
h
 of
gle

ot a
e

ion
ally.
nalysis
Single-processor DAKOTA implementation

The asynchronous mappings described in Direct function synchronization on page 101 and
System call synchronization on page 101 can be used to accomplish coarse-grained parall
even when the DAKOTA process is running on a single processor. In this case, the master-
algorithm is not used and jobs are not assigned with MPI message-passing. Therefore, som
additional mechanism external to DAKOTA will usually be desired to distribute the
asynchronous jobs among processors, since multitasking on a single processor is generall
slower than running the jobs sequentially. For the asynchronous system call case, network
leveling software (e.g., load leveler, load sharing facility, or other native scheduling software
compute server job queues can provide this mechanism, and in the asynchronous direct fu
case, thread schedulers can be used (e.g., to select nodes within an SMP architecture).

To accomplish multilevel parallelism in this context, one could use DAKOTA’s asynchronous
system call interface to submit multiple multiprocessor jobs to the queues of a parallel com
server. Unfortunately, loading the queues with multiple jobs is generally forbidden in the us
rules of Sandia’s MP machines. Moreover, each set of concurrent jobs will suffer a delay w
percolates through the queue, such that an optimization performing evaluations in this way
suffers repeated queue delays on each cycle (as opposed to a single queue delay in other
approaches). Nevertheless, if specialized queues which allow multiple jobs per user and w
minimize repeated delays can be created and balanced with competing concerns, then this
approach can be a viable avenue to multilevel parallelism.

An alternative approach is to allocate a large number of compute processors to a single sc
which runs on a service node and manages concurrent multiprocessor jobs on partitions of
total allocation. This is in fact mimicking the communicator partitioning capabilities of MPI
within sophisticated scripting. While this has the advantages of simplifying the automation
pre- and post-processing (since service nodes run full Unix) and minimizing analysis code
modifications (since the analysis does not have to be modified to a callable subroutine), it h
disadvantages that (1) this is highly specific to the job submission software of a particular
parallel machine and is therefore not particularly flexible or extensible, and (2) DAKOTA is
disconnected from its function evaluations. This disconnection is due to the fact that DAKO
and the server script are launched separately, and information normally passed to the simu
by DAKOTA during simulation invocation (e.g., where to obtain the parameters and where t
write the results) must be mimicked by the server script. DAKOTA’s only communication wit
the simulations in this case comes through the creation of parameters files and the capture
completed results files. While this procedure has been successfully demonstrated for a sin
multiprocessor simulation, concurrent multiprocessor simulations will have the additional
complication that the server script must correctly track the evaluation numbers (which are n
simple increasing sequence is the presence of duplicated analyses) in order to associate th
proper tagged files from DAKOTA with the analyses it launches.

The final option for multilevel parallelism is to use the multiprocessor DAKOTA implementat
(described in the following section) and manage multiprocessor function evaluations intern
While elegant and general-purpose, it also has disadvantages in required modification to a
User’s Instructions Exploiting Parallelism - Implementation of Parallelism 105

uture

e

ese
nt of
ms

ervers

d

ble
ross
ct
.

t
n
n
ols

is not

sors.

r

able
 page
D
e

codes. Each of these three options is currently under investigation, and it is expected that f
releases of the software documentation will be able to recommend the most fruitful of these
approaches.

Multiprocessor DAKOTA implementation

When executing DAKOTA in multiprocessor mode using the Master-slave algorithm on pag
103, the synchronous and asynchronous operations of the direct function and system call
simulation interfacing classes are issues that are local to a processor. Layered on top of th
local interfacing capabilities is the software which manages message passing for assignme
work among processors. This design allows flexibility in handling local evaluation mechanis
independently from the particular form of the global message passing model. For example,
within the global context of a master-slave approach in which the master isasynchronously
assigning jobs and retrieving results using message passing with slave servers, the slave s
locally execute their simulations using thesynchronous direct function or system call protocols.
This is due to the fact that, since the master-slave algorithm is managing the parallelism an
scheduling one job at a time to a server, there is nothing to be gained in performing the job
asynchronously on the server. However, if new approaches or architectures become availa
which can exploit additional parallelism at the slave server level (e.g., message-passing ac
multiple SMP’s with multiple asynchronous jobs on each SMP), then the asynchronous dire
function and system call capabilities could be employed to realize this additional parallelism

In the single-level parallel case of single-processor analyses, either the system call or direc
function interfacing approaches can be used. The system call case is particularly popular o
clusters of workstations since the analysis can be used in unmodified form and the user ca
employ a simple driver script to coordinate any combination of pre- and post-processing to
associated with an analysis. Applications can be configured quickly and easily in this way.

For multiprocessor analyses, the system call interfacing approach cannot be used since it
possible to share an MPI communicator (which provides the computational context for the
multiprocessor analysis) between processes spawned with system calls on different proces
Therefore, the direct function interfacing approach must be used whenever employing
multiprocessor analyses within multiprocessor DAKOTA (in this case, an MPI communicato
can be passed in through the procedure call for all processors within a slave server - see
Multilevel parallelism on page 103 for additional MPI details). The main ramification of the
restriction to the direct function interface is the requirement to modify the analysis into a call
subroutine and link it into the executable (see The Direct Function Application Interface on
80). However,it may be feasible to remove this restriction in the future through use of MPM
(“Multiple Program, Multiple Data”) executable loading or dynamic process creation with th
emerging MPI-2 standard (see [Eldred, M.S., and Hart, W.E., 1998] for additional details).
User’s Instructions Exploiting Parallelism - Implementation of Parallelism 106

iple
is

 of

 to

m

y
the

n

will be
de

 and
ble
Specifying Parallelism

In specifying parallelism with DAKOTA, the “model” encompasses the parallelism that is
supported in the problem (in particular, the interface specification specifies the available
parallelism). Then, depending on the “iterator” selected, the available parallelism (i.e., mult
processors, asynchronous interfaces) will be automatically exploited in particular ways. Th
design is known asimplicit parallelism, in that the use of parallelism by an iterator is implicit:
the methods recognize the available parallelism and exploit it without need for specification
special parallelized methods.

The Model

Specifying parallelism within a model can involve the use of theasynchronous ,
evaluation_servers , andprocessors_per_evaluation keywords described in
Interface Commands on page 127.

When using DAKOTA on a single-processor and relying on external means to allocate jobs
processors (see Single-processor DAKOTA implementation on page 105), theasynchronous
interface specification is all that is required to specify the availability of asynchronous syste
calls or asynchronous direct invocations within a model.

When executing DAKOTA across multiple processors and managing job allocation internall
(see Multiprocessor DAKOTA implementation on page 106), DAKOTA automatically detects
presence of multiple processors and will, by default,asynchronously schedule jobs among slave
processors while executing the jobs on the slave processors usingsynchronousinvocations. If the
function evaluations are to be performed on multiple processors (multilevel parallelism), the
evaluation_servers or processors_per_evaluation must be specified to define
how the total processor allocation will be partitioned into function evaluation servers for a
particular simulation interface.
Note: asynchronous execution on the slave processors may be supported in the future for SMP clusters and
triggered by theasynchronous interface specification. However, using this specification in multiprocessor mo
is not supported in the current release.

The Iterator

As mentioned previously, iterators automatically detect the parallelism available in a model
exploit it as appropriate within the iteration. Currently, the iterators which can exploit availa
parallelism are:

• SGOPT optimizers - the genetic algorithm, coordinate pattern search, Solis-Wets, and
stratified Monte Carlo methods within SGOPT.

• Parameter studies - DAKOTA’svector , list , centered , andmultidim parameter
studies.
User’s Instructions Exploiting Parallelism - Specifying Parallelism 107

the

ever

e as

 each

us

ill

(one
ly for
 the
eue or
• Gradient-based optimizers - NPSOL, DOT, and OPT++ can all exploit parallelism through
use of DAKOTA’s native finite differencing routine (selected withmethod_source
dakota in the responses specification) which will perform concurrent evaluations when
the model supports them.

• Speculative optimization - NPSOL, DOT, and OPT++ can speculate that the gradient
information associated with a given line search point will be used later and compute the
gradient information, either by finite difference or analytically, in parallel at the same tim
the function values. This option is selected with thespeculative keyword in the method
specification and is used to balance the total amount of computation to be performed at
design point (allowing efficient utilization of multiple processors).

Single-processor DAKOTA specification

Specifying a single-processor DAKOTA job (which exploits parallelism through asynchrono
calls to external job schedulers) requires inclusion ofasynchronous in the interface
specification. For example, the following specification runs an NPSOL optimization which w
perform asynchronous finite differencing:

interface, \
 application system, \
 asynchronous \
 analysis_driver= ’qsub_script’

variables, \
 continuous_design = 5 \
 cdv_initial_point 0.2 0.05 0.08 0.2 0.2 \
 cdv_lower_bounds 0.15 0.02 0.05 0.1 0.1 \
 cdv_upper_bounds 1.0 1.0 1.0 1.0 1.0 \
 cdv_descriptor ’x1’ ’x2’ ’x3’ ’x4’ ’x5’

responses, \
 num_objective_functions = 1 \
 num_nonlinear_constraints = 2 \
 numerical_gradients \
 interval_type central \
 method_source dakota \
 fd_step_size = 1.0E-4 \
 no_hessians

method, \
 npsol_sqp

Note thatmethod_source dakota is needed to invoke DAKOTA’s internal finite
differencing routine in order to exploit the parallelism. In this case, 11 function evaluations
at the current point plus two deltas in each of five variables) can be performed simultaneous
each NPSOL response request. These 11 evaluations will be launched with system calls in
background and presumably assigned to additional processors through submission to a qu
similar approach.
User’s Instructions Exploiting Parallelism - Specifying Parallelism 108

e
ve

f-

r
tegy
Multiprocessor DAKOTA specification

Since the presence of multiple processors within the MPI context is detected automatically
(whenever DAKOTA is launched in parallel withmpirun or yod), there is little to specify for
the multiprocessor DAKOTA case. To run the same NPSOL example using the master-slav
approach,asynchronous would be removed from the interface specification (since the sla
servers execute their evaluations synchronously as described in Multiprocessor DAKOTA
implementation on page 106):

interface, \
 application system, \
 analysis_driver= ’qsub_script’

This will result in concurrent execution of single-processor evaluations managed by the sel
scheduling master-slave algorithm.

If multilevel parallelism is being used, thenevaluation_servers or
processors_per_evaluation must additionally be specified to determine the processo
partitioning to be used for a particular interface. In a more advanced example, a hybrid stra
which employs multilevel parallelism and which reconfigures the processor partitioning for
varying model fidelity can be specified as follows:

strategy, \
 multi_level uncoupled \
 method_list = ’VPS’, ’NLP’

variables, \
 continuous_design = 4 \
 cdv_initial_point 1.0 1.0 1.0 1.0

method, \
 vector_parameter_study \
 id_method = ’VPS’ \
 step_vector = -.1 -.1 -.1 -.1 \
 num_steps = 20 \
 interface_pointer = ’COARSE’ \
 responses_pointer = ’NO_GRAD’

interface, \
 application direct, \
 id_interface = ’COARSE’ \
 analysis_driver = ’sim1’ \
 processors_per_evaluation = 5

responses, \
 id_responses = ’NO_GRAD’ \
 num_objective_functions = 1 \
 num_nonlinear_constraints = 2 \
 no_gradients \
 no_hessians

method, \
 npsol_sqp \
User’s Instructions Exploiting Parallelism - Specifying Parallelism 109

rs of 5
form
10

6).

 on

se
 id_method = ’NLP’ \
 interface_pointer = ’FINE’ \
 responses_pointer = ’FD_GRAD’

interface, \
 application direct, \
 id_interface = ’FINE’ \
 analysis_driver = ’sim2’ \
 processors_per_evaluation = 10

responses, \
 id_responses = ’FD_GRAD’ \
 num_objective_functions = 1 \
 num_nonlinear_constraints = 2 \
 numerical_gradients \
 interval_type central \
 method_source dakota \
 fd_step_size = 1.0E-4 \
 no_hessians

If DAKOTA is executed on 40 processors (usingmpirun or yod), then the study will first run a
parameter study using a coarse model in which evaluations are scheduled through 8 serve
processors each. The study will then pass the best parameter set to NPSOL which will per
parallel finite differencing (as in the previous examples) on a fine model using 4 servers of
processors each. Note that, for the multilevel parallel case, thedirect application interface
must be used for both interfaces (see Multiprocessor DAKOTA implementation on page 10

Running a parallel DAKOTA job

Single-processor DAKOTA execution

Running a single-processor DAKOTA job (which exploits parallelism through asynchronous
calls to external job schedulers) is identical to the procedure described in Running DAKOTA
page 123, e.g.:

dakota -i dakota.in > dakota.out

Multiprocessor DAKOTA execution

Running a multiprocessor DAKOTA job (which internally exploits parallelism) requires the u
of an executable loading facility such asmpirun or yod .

On clusters of workstations, thempirun script is used to initiate a parallel DAKOTA job, e.g.:
mpirun -np 12 dakota -i dakota.in > dakota.out
mpirun -machinefile machines -np 12 dakota -i dakota.in >

dakota.out
User’s Instructions Exploiting Parallelism - Running a parallel DAKOTA job 110

efault
ropp,

ilable

d in
ed

ath
r

e
me
where both examples specify the use of 12 processors, the former selecting them from a d
system resources file and the latter specifying particular machines in a machine file (see [G
W., and Lusk, E., 1996] for details).

On a massively parallel computer such as the TeraFLOPS machine, similar facilities are ava
from the Cougar operating system:

yod -sz 501 dakota -i dakota.in > dakota.out

In both thempirun andyod cases, MPI command line arguments are used by MPI (extracte
the call toMPI_Init) and DAKOTA command line arguments are used by DAKOTA (extract
by DAKOTA’s command line handler).

Caveats

MPI extracts its command line arguments first which can be problematic since certain file p
specifications (e.g., “../some_filename ”) have been observed to cause problems, both fo
multiprocessor executions withmpirun and for single-processor executions of an executable
configured with MPI (sinceMPI_Init is still called in this case). These path problems can b
most easily resolved by using local linkage (all files or softlinks to the files appear in the sa
directory), which will likely be automated within a run script in a future software release.
User’s Instructions Exploiting Parallelism - Running a parallel DAKOTA job 111

the
ies

,
del,”
 there

ed

ning
input
an

 are
, and

tiple
apes
Commands Introduction
Overview on page 112IDR Input Specification File on page 112 Common Specification Mistakes on page 118Sample dakota.in Files on page 118 Sample 1: Optimization on page 119Sample 2: Least Squares on page 121Sample 3: Nondeterministic Analysis on page 121Sample 4: Parameter Study on page 122Sample 5: Multilevel Hybrid Strategy on page 122Running DAKOTA on page 123 Executable Location on page 123 Remote installations on page 123Sandia developer-supported installations on page 123Command Line Inputs on page 124Execution Syntax on page 124 Input/Output Management on page 124Restart Management on page 125Tabular descriptions on page 126

Overview

In the DAKOTA system, astrategy governs how eachmethod mapsvariables into responses
through the use of aninterface. Each of these five pieces (strategy, method, variables, responses,
andinterface) are separate specifications in the user’s input file, and as a whole, determine
study to be performed during an execution of the DAKOTA software. The number of strateg
which can be invoked during a DAKOTA execution is limited to one. This strategy, however
may invoke multiple methods. Furthermore, each method may (in general) have its own “mo
consisting of its own set of variables, its own set of responses, and its own interface. Thus,
may be multiple specifications of themethod, variables, responses, andinterface sections.

The syntax of DAKOTA specification is governed by the Input Deck Reader (IDR) parsing
system [Weatherby, J.R., Schutt, J.A., Peery, J.S., and Hogan, R.E., 1996], which uses the
dakota.input.spec file to describe the allowable inputs to the system. This input
specification file provides a template of the allowable system inputs from which a particular
input file (referred to herein as adakota.in file) can be derived.

IDR Input Specification File

DAKOTA input is governed by the IDR input specification file. This file
(dakota.input.spec) is used in the generation of parsing system files which are compil
into the DAKOTA executable. Therefore,dakota.input.spec is thedefinitive source for
input syntax, capability options, and optional and required capability sub-parameters. Begin
users may find this file more confusing than helpful and, in this case, adaptation of example
files to a particular problem may be a more effective approach. However, advanced users c
master all of the various input specification possibilities once the structure of the input
specification file is understood. Key features include:

1. In the input specification, required parameters are enclosed in {}’s, optional parameters
enclosed in []’s, required groups are enclosed in ()’s, optional groups are enclosed in []’s
either-or relationships are denoted by the | symbol. These symbols only appear in
dakota.input.spec ; they must not appear in actual user input files.

2. Keyword specifications (i.e., strategy, method, variables, interface, and responses) are
delimited by newline characters. Therefore, to continue a keyword specification onto mul
lines, the back-slash character (“\”) is needed to escape the newline. These newline esc
appear both in the input specification and in user input files.

3. Each of the five keyword specifications begins with a
<KEYWORD = name>, <FUNCTION = handler_name>
User’s Instructions Commands Introduction - Overview 112

in

the
header which names the keyword and provides the binding to the keyword handler with
DAKOTA’s problem description database. In an actual input file, only the name of the
keyword appears (e.g.,variables).

4. Some of the specifications within a keyword indicate that the user must supply<INTEGER>,
<REAL>, <STRING> or <LISTof><INTEGER> , <LISTof><REAL> ,
<LISTof><STRING> data as part of the specification. In an actual input file, the “=” is
optional,<LISTof> data can be separated by commas or whitespace, and<STRING> data
are enclosed in single quotes (e.g.,‘text_book’).

5. Input is order-independent (except for entries in data lists) and white-space insensitive.
Although the order of input shown in the Sample dakota.in Files on page 118 generally
follows the order of options in the input specification, this is not required.

6. Specifications may be abbreviated so long as the abbreviation is unique. For example,
application specification within the interface keyword could be abbreviated asapplic ,
but should not be abbreviated asapp since this would be ambiguous with
approximation .

7. Comments are preceded by #.

Thedakota.input.spec file used in DAKOTA V1.1 is:

<KEYWORD = variables>, <FUNCTION = variables_kwhandler> \
[id_variables = <STRING>] \
[{continuous_design = <INTEGER>} \

[cdv_initial_point = <LISTof><REAL>] \
[cdv_lower_bounds = <LISTof><REAL>] \
[cdv_upper_bounds = <LISTof><REAL>] \
[cdv_descriptor = <LISTof><STRING>]] \

[{discrete_design = <INTEGER>} \
[ddv_initial_point = <LISTof><INTEGER>] \
[ddv_lower_bounds = <LISTof><INTEGER>] \
[ddv_upper_bounds = <LISTof><INTEGER>] \
[ddv_descriptor = <LISTof><STRING>]] \

[{uncertain = <INTEGER>} \
[uv_descriptor = <LISTof><STRING>] \
{uv_distribution_type = <LISTof><STRING>} \
[uv_means = <LISTof><REAL>] \
[uv_std_deviations = <LISTof><REAL>] \
[uv_lower_bounds = <LISTof><REAL>] \
[uv_upper_bounds = <LISTof><REAL>] \
[uv_filenames = <LISTof><STRING>]] \

[{continuous_state = <INTEGER>} \
{csv_initial_state = <LISTof><REAL>} \
[csv_descriptor = <LISTof><STRING>]] \

[{discrete_state = <INTEGER>} \
{dsv_initial_state = <LISTof><INTEGER>} \
[dsv_descriptor = <LISTof><STRING>]]

<KEYWORD = responses>, <FUNCTION = responses_kwhandler> \
[id_responses = <STRING>] \
[{active_set_vector} {on} | {off}] \
({num_objective_functions = <INTEGER>} \
 [num_nonlinear_constraints = <INTEGER>]) \
| \
{num_least_squares_terms = <INTEGER>} \
| \
{num_response_functions = <INTEGER>} \
{no_gradients} \
User’s Instructions Commands Introduction - IDR Input Specification File 113

| \
({numerical_gradients} \

[{method_source} {dakota} | {vendor}] \
[{interval_type} {forward} | {central}] \
[fd_step_size = <REAL>]) \

| \
{analytic_gradients} \
| \
({mixed_gradients} \

{id_numerical = <LISTof><INTEGER>} \
 [{method_source} {dakota} | {vendor}] \
 [{interval_type} {forward} | {central}] \
 [fd_step_size = <REAL>] \
{id_analytic = <LISTof><INTEGER>}) \

{no_hessians} \
| \
{analytic_hessians}

<KEYWORD = interface>, <FUNCTION = interface_kwhandler> \
[id_interface = <STRING>] \
({application} \

({analysis_driver = <STRING>} \
 [input_filter = <STRING>] \
 [output_filter = <STRING>]) \
| \
({concurrent_drivers = <LISTof><STRING>} \
 [pre_driver = <STRING>] \
 [post_driver = <STRING>]) \
({system} [asynchronous] \
 [parameters_file = <STRING>] \
 [results_file = <STRING>] \
 [analysis_usage = <STRING>] \
 [aprepro] \
 [file_tag] \
 [file_save]) \
| \
({direct} [asynchronous] \
 [evaluation_servers = <INTEGER>] \
 [processors_per_evaluation = <INTEGER>]) \
[{failure_capture} {abort} | {retry = <INTEGER>} | \
 {recover = <LISTof><REAL>} | {continuation}]) \

| \
({approximation} \

{neural_network} | {response_surface} | \
 {multi_point} | {mars_surface}) \

| \
{test = <STRING>}

<KEYWORD = strategy>, <FUNCTION = strategy_kwhandler> \
({multi_level} \
 ({uncoupled} \

[{adaptive} {progress_threshold = <REAL>}] \
{method_list = <LISTof><STRING>}) \

 | \
 ({coupled} \

{global_method = <STRING>} \
{local_method = <STRING>} \
[local_search_probability = <REAL>])) \

| \
({seq_approximate_opt} \

{opt_method = <STRING>} \
{approximate_interface = <STRING>} \
{actual_interface = <STRING>}) \

| \
({opt_under_uncertainty} \

{opt_method = <STRING>} \
{nond_method = <STRING>}) \

| \
({branch_and_bound} \

{opt_method = <STRING>} \
{iterator_servers = <INTEGER>}) \

| \
User’s Instructions Commands Introduction - IDR Input Specification File 114

({single_method} \
[method_pointer = <STRING>])

<KEYWORD = method>, <FUNCTION = method_kwhandler> \
[id_method = <STRING>] \
[interface_pointer = <STRING>] \
[variables_pointer= <STRING>] \
[responses_pointer = <STRING>] \
[speculative] \
[{output} {verbose} | {quiet}] \
[linear_constraints = <LISTof><REAL>] \
[max_iterations = <INTEGER>] \
[max_function_evaluations = <INTEGER>] \
[constraint_tolerance = <REAL>] \
[convergence_tolerance = <REAL>] \
({dot_frcg} \

[{optimization_type} {minimize} | {maximize}]) \
| \
({dot_mmfd} \

[{optimization_type} {minimize} | {maximize}]) \
| \
({dot_bfgs} \

[{optimization_type} {minimize} | {maximize}]) \
| \
({dot_slp} \

[{optimization_type} {minimize} | {maximize}]) \
| \
({dot_sqp} \

[{optimization_type} {minimize} | {maximize}]) \
| \
({npsol_sqp} \

[verify_level = <INTEGER>] \
[function_precision = <REAL>] \
[linesearch_tolerance = <REAL>]) \

| \
({optpp_cg} \

[max_step = <REAL>] \
[gradient_tolerance = <REAL>]) \

| \
({optpp_q_newton} \

[{search_method} {value_based_line_search} | \
 {gradient_based_line_search} | {trust_region}] \
[max_step = <REAL>] \
[gradient_tolerance = <REAL>]) \

| \
({optpp_g_newton} \

[{search_method} {value_based_line_search} | \
 {gradient_based_line_search} | {trust_region}] \
[max_step = <REAL>] \
[gradient_tolerance = <REAL>]) \

| \
({optpp_newton} \

[{search_method} {value_based_line_search} | \
 {gradient_based_line_search} | {trust_region}] \
[max_step = <REAL>] \
[gradient_tolerance = <REAL>]) \

| \
({optpp_fd_newton} \

[{search_method} {value_based_line_search} | \
 {gradient_based_line_search} | {trust_region}] \
[max_step = <REAL>] \
[gradient_tolerance = <REAL>]) \

| \
({optpp_baq_newton} \

[gradient_tolerance = <REAL>]) \
| \
({optpp_ba_newton} \

[gradient_tolerance = <REAL>]) \
| \
({optpp_bcq_newton} \

[{search_method} {value_based_line_search} | \
 {gradient_based_line_search} | {trust_region}] \
User’s Instructions Commands Introduction - IDR Input Specification File 115

[max_step = <REAL>] \
[gradient_tolerance = <REAL>]) \

| \
({optpp_bcg_newton} \

[{search_method} {value_based_line_search} | \
 {gradient_based_line_search} | {trust_region}] \
[max_step = <REAL>] \
[gradient_tolerance = <REAL>]) \

| \
({optpp_bc_newton} \

[{search_method} {value_based_line_search} | \
 {gradient_based_line_search} | {trust_region}] \
[max_step = <REAL>] \
[gradient_tolerance = <REAL>]) \

| \
({optpp_bc_ellipsoid} \

[initial_radius = <REAL>] \
[gradient_tolerance = <REAL>]) \

| \
({optpp_pds} \

[search_scheme_size = <INTEGER>]) \
| \
{optpp_test_new} \
| \
({sgopt_pga_real} \

[solution_accuracy = <REAL>] \
[max_cpu_time = <REAL>] \
[seed = <INTEGER>] \
[population_size = <INTEGER>] \
[{selection_pressure} {rank = <REAL>} | \
 {proportional}] \
[{replacement_type} {random = <INTEGER>} | \
 {CHC = <INTEGER>} | {elitist = <INTEGER>} \
 [new_solutions_generated = <INTEGER>]] \
[{crossover_type} {two_point} | {mid_point} | \
 {blend} | {uniform} \
 [crossover_rate = <REAL>]] \
[{mutation_type} ({normal} [std_deviation = <REAL>]) \
 | {interval} | {cauchy} \
 [dimension_rate = <REAL>] \
 [population_rate = <REAL>]]) \

| \
({sgopt_pga_int} \

[solution_accuracy = <REAL>] \
[max_cpu_time = <REAL>] \
[seed = <INTEGER>] \
[population_size = <INTEGER>] \
[{selection_pressure} {rank = <REAL>} | \
 {proportional}] \
[{replacement_type} {random = <INTEGER>} | \
 {CHC = <INTEGER>} | {elitist = <INTEGER>} \
 [new_solutions_generated = <INTEGER>]] \
[{crossover_type} {two_point} | {uniform} \
 [crossover_rate = <REAL>]] \
[{mutation_type} {offset} | {interval} \
 [dimension_rate = <REAL>] \
 [population_rate = <REAL>]]) \

| \
({sgopt_coord_ps} \

[solution_accuracy = <REAL>] \
[max_cpu_time = <REAL>] \
[{expansion_policy} {unlimited} | {once}] \
[expand_after_success = <INTEGER>] \
[expansion_exponent = <INTEGER>] \
[contraction_exponent = <INTEGER>] \
{initial_delta = <REAL>} \
{threshold_delta = <REAL>} \
[{exploratory_moves} {standard} | {offset} | \
 {best_first} | {biased_best_first}]) \

| \
({sgopt_coord_sps} \

[solution_accuracy = <REAL>] \
User’s Instructions Commands Introduction - IDR Input Specification File 116

for
s. Each
yword,

ed by
d

ust
[max_cpu_time = <REAL>] \
[seed = <INTEGER>] \
[{expansion_policy} {unlimited} | {once}] \
[expand_after_success = <INTEGER>] \
[expansion_exponent = <INTEGER>] \
[contraction_exponent = <INTEGER>] \
{initial_delta = <REAL>} \
{threshold_delta = <REAL>} \
[{exploratory_moves} {standard} | {offset} | \
 {best_first} | {biased_best_first}]) \

| \
({sgopt_solis_wets} \

[solution_accuracy = <REAL>] \
[max_cpu_time = <REAL>] \
[seed = <INTEGER>] \
[expand_after_success = <INTEGER>] \
[contract_after_failure = <INTEGER>] \
[initial_rho = <REAL>] \
[threshold_rho = <REAL>]) \

| \
({sgopt_strat_mc} \

[solution_accuracy = <REAL>] \
[max_cpu_time = <REAL>] \
[seed = <INTEGER>] \
[partitions = <LISTof><INTEGER>]) \

| \
({nond_probability} \

{observations = <INTEGER>} \
[seed = <INTEGER>] \
{sample_type} {random} | {lhs} \
{response_thresholds = <LISTof><REAL>}) \

| \
({nond_mean_value} \

{response_filenames = <LISTof><STRING>}) \
| \
({vector_parameter_study} \

({final_point = <LISTof><REAL>} \
 {step_length = <REAL>} | {num_steps = <INTEGER>}) \
| \
({step_vector = <LISTof><REAL>} \
 {num_steps = <INTEGER>})) \

| \
({list_parameter_study} \

{list_of_points = <LISTof><REAL>}) \
| \
({centered_parameter_study} \

{percent_delta = <REAL>} \
{deltas_per_variable = <INTEGER>}) \

| \
({multidim_parameter_study} \

{partitions = <LISTof><INTEGER>})

In the variables keyword, the main structure is that of the five optional group specifications
continuous design, discrete design, uncertain, continuous state, and discrete state variable
of these specifications can either appear or not appear as a group. Within the responses ke
the primary structure is the required specification of the function set (either an optimization
function set OR a least squares function set OR a generic function set must appear), follow
the required specification of the gradients (either none OR numerical OR analytic OR mixe
must be specified) followed by the required specification of the Hessians (either none OR
analytic must be specified). Next, the interface keyword requires the selection of either an
application OR an approximation OR a test interface. Within the application block, the type m
be specified with either the system OR the direct required group specification. The strategy
specification is relatively simple, requiring either a multilevel OR a sequential approximate
User’s Instructions Commands Introduction - IDR Input Specification File 117

thod

ved

ds
ngs)
 page

l and
 to

rrors

n
r

not

yword
ven
ted

late
optimization OR an optimization under uncertainty OR a branch and bound OR a single me
strategy specification. Within the multilevel group specification, either an uncoupled OR a
coupled group specification must be supplied. Lastly, the method keyword is the most invol
specification; however, its structure is relatively simple. The structure is simply that of a
sequence of optional method-independent settings followed by a long list of possible metho
appearing as required group specifications (containing a variety of method-dependent setti
separated by OR’s. Refer to Variables Commands on page 134, Responses Commands on
141, Interface Commands on page 127, Strategy Commands on page 150, and Method
Commands on page 156 for detailed information on the keywords and their various optiona
required specifications. And for additional details on IDR specification logic and rules, refer
[Weatherby, J.R., Schutt, J.A., Peery, J.S., and Hogan, R.E., 1996].

Common Specification Mistakes

Spelling and omission of required parameters are the most common errors. Less obvious e
include:

1. Documentation of new capability can lag the use of new capability in executables. Whe
parsing errors occur which the documentation cannot explain, reference to the particula
input specification used in building the executable will often resolve the errors.

2. Since keywords are terminated with the newline character, care must be taken to avoid
following the backslash character with any white space since the newline character will
be properly escaped, resulting in parsing errors due to the truncation of the keyword
specification.

3. Care must be taken to include newline escapes when embedding comments within a ke
specification. That is, newline characters will signal the end of a keyword specification e
if they are part of a comment line. For example, the following specification will be trunca
because the embedded comment neglects to escape the newline:

No error here: newline need not be escaped since comment is not embedded
responses, \
 num_objective_functions = 1 \
Error here: this comment must escape the newline
 analytic_gradients \
 no_hessians

In most cases, the IDR system provides helpful error messages which will help the user iso
the source of the parsing problem.

Sample dakota.in Files

A DAKOTA input file is a collection of the fields allowed in thedakota.input.spec
specification file which describe the problem to be solved by the DAKOTA system. Several
examples follow.
User’s Instructions Commands Introduction - Sample dakota.in Files 118

 on
ctory
t

Sample 1: Optimization

The following sample input file shows single-method optimization of the Textbook Example
page 192 using DOT’s modified method of feasible directions. It is available in the test dire
asDakota/test/dakota_textbook.in . Helpful notes are included in this sample inpu
file as comments.

DAKOTA INPUT FILE - dakota_textbook.in
NOTES: Specifications are delimited by newline characters. Therefore, to
continue a specification onto multiple lines, the back-slash character
is needed to escape the newline. Input is order-independent and
white-space insensitive. Keywords may be abbreviated so long as the
abbreviation is unique. Comments are preceded by #. Helpful NOTES
precede each section specification; however, the definitive resources
for input grammar are Dakota/src/dakota.input.spec and the Commands
chapter of the User’s Instructions manual.

Interface section specification
NOTES: Interfaces are 1 of 3 main types: application interfaces are used for
interfacing with simulation codes, approximation interfaces use
inexpensive design space approximations in place of expensive
simulations, and test interfaces use linked-in test functions for
algorithm testing purposes (to eliminate system call overhead).
Application interfaces can be further categorized into system and
direct types. The system type uses system calls to invoke the
simulation, while the direct type uses the same constructs as the test
interface for linked-in simulation codes. Both application interface
types use analysis_driver, input_filter, and output_filter
specifications. The system type additionally uses parameters_file,
results_file, analysis_usage, aprepro, file_tag, and file_save
specifications. The analysis_driver provides the name of the analysis
executable, driver script, or linked module; the input_filter and
output_filter provide pre- and post-processing for the analysis in the
procedure of mapping parameters into responses (default = NO_FILTER);
the parameters_file and results_file are data files which Dakota
creates and reads, respectively, in the system call case (default =
Unix temp files); analysis_usage defines nontrivial command syntax
(default = standard syntax); aprepro controls the format of the
parameters file for usage with the APREPRO utility; file_tag controls
the unique tagging of data files with function evaluation number
(default = no tagging); and file_save controls whether or not file
cleanup operations are performed (default = data files are removed
when no longer in use). Most settings are optional with meaningful
defaults as shown above. Refer to the Interface Commands section in
the User’s Instructions manual for additional information.
interface, \

application system, \
 input_filter = ‘NO_FILTER’ \
 output_filter = ‘NO_FILTER’ \
 analysis_driver = ‘text_book’ \
 parameters_file = ‘text_book.in’ \
 results_file = ‘text_book.out’ \
 analysis_usage = ‘DEFAULT’ \
 file_tag \
 file_save

Variables specification
NOTES: A variables set can contain design, uncertain, and state variables
for continuous, discrete, or mixed variable problem domains.
Design variables are those variables which an optimizer adjusts in
order to locate an optimal design. Each of the design parameters
can have an initial point, a lower bound, an upper bound, and a
descriptive tag. Uncertain variables are those variables which are
characterized by probability distributions. Each uncertain variable
specification can contain a distribution type, a mean, a standard
deviation, a lower bound, an upper bound, a histogram filename and a
descriptive tag. State variables are “other” variables which are to
be mapped through the interface. Each state variable specification
can have an initial state and a descriptor. State variables provide a
User’s Instructions Commands Introduction - Sample dakota.in Files 119

convenience mechanism for parameterizing additional model inputs, such
as mesh density, solver convergence tolerance and time step controls,
and will be used to enact model adaptivity in future strategy
developments.

variables, \
continuous_design = 2 \
 cdv_initial_point 0.9 1.1 \
 cdv_upper_bounds 5.8 2.9 \
 cdv_lower_bounds 0.5 -2.9 \
 cdv_descriptor ‘x1’ ‘x2’

Responses specification
NOTES: This specification implements a generalized Dakota data set by
specifying a set of functions and the types of gradients and Hessians
for these functions. Optimization data sets require specification of
num_objective_functions and num_nonlinear_constraints. Multiobjective
opimization is not yet supported, so num_objective_functions must
currently be equal to 1. Uncertainty quantification data sets are
specified by num_response_functions. Nonlinear least squares data
sets are specified with num_least_squares_terms. Gradient type
specification may be no_gradients, analytic_gradients,
numerical_gradients or mixed_gradients. Numerical and mixed gradient
specifications can optionally include selections for method_source,
interval_type, and fd_step_size. Mixed_gradient specifications require
id_numerical & id_analytic lists to specify the gradient types for
different function numbers. Hessian type specification may currently
be no_hessians or analytic_hessians.

responses, \
num_objective_functions = 1 \
num_nonlinear_constraints = 2 \
analytic_gradients \
no_hessians

Strategy specification
NOTES: Contains specifications for multilevel, SAO, and OUU strategies. The
single_method strategy is a “fall through” strategy, in that in only
invokes a single iterator. If no strategy specification appears, then
single_method is the default.

strategy, \
single_method

Method specification
NOTES: method can currently be dot_frcg, dot_mmfd, dot_bfgs, dot_slp,
dot_sqp, npsol_sqp, optpp_cg, optpp_q_newton, optpp_g_newton,
optpp_newton, optpp_fd_newton, optpp_ba_newton, optpp_baq_newton,
optpp_bc_newton, optpp_bcq_newton, optpp_bcg_newton,
optpp_bc_ellipsoid, optpp_pds, optpp_test_new, sgopt_pga_real,
sgopt_pga_int, sgopt_coord_ps, sgopt_coord_sps, sgopt_solis_wets,
sgopt_strat_mc, nond_probability, nond_mean_value,
vector_parameter_study, list_parameter_study,
centered_parameter_study, or multidim_parameter_study. Most method
control parameters are optional with meaningful defaults. Default
values for optional parameters are defined in the DataMethod class
constructor and are documented in the Method Commands section of the
User’s Instructions manual.

method, \
 dot_mmfd, \

 max_iterations = 50, \
 convergence_tolerance = 1e-4 \
 output verbose \
 optimization_type minimize
User’s Instructions Commands Introduction - Sample dakota.in Files 120

ctory
Sample 2: Least Squares

The following sample input file shows a nonlinear least squares solution of the Rosenbrock
Example on page 204 using OPT++’s Gauss-Newton method. It is available in the test dire
asDakota/test/dakota_rosenbrock.in .

interface, \
application system, \
 analysis_driver = ‘rosenbrock_ls’

variables, \
continuous_design = 2 \
 cdv_initial_point -1.2 1.0 \
 cdv_lower_bounds -2.0 -2.0 \
 cdv_upper_bounds 2.0 2.0 \
 cdv_descriptor ‘x1’ ‘x2’

responses, \
num_least_squares_terms = 2 \
analytic_gradients \
no_hessians

method, \
optpp_bcg_newton, \
max_iterations = 50, \
convergence_tolerance = 1e-4

Sample 3: Nondeterministic Analysis

The following sample input file shows Latin Hypercube Monte Carlo sampling using the
Textbook Example on page 192. It is available in the test directory asDakota/test/
dakota_textbook_lhs.in .

interface, \
application system, \
 analysis_driver= ‘text_book’

variables, \
uncertain = 2 \
 uv_distribution_type = ‘normal’ ‘normal’ \
 uv_means = 248.89, 593.33 \
 uv_std_deviations = 12.4, 29.7 \
 uv_lower_bounds = 199.3, 474.63 \
 uv_upper_bounds = 298.5, 712. \
 uv_descriptor = ‘TF1’ ‘TF2’

responses, \
num_response_functions = 3 \
no_gradients \
no_hessians

strategy, \
single_method

method, \
 nond_probability, \
 observations = 20, \
 response_thresholds = 1.2e+11 6.e+04 3.5e+05\

 seed = 1 \
 sample_type lhs
User’s Instructions Commands Introduction - Sample dakota.in Files 121

mple

e test
Sample 4: Parameter Study

The following sample input file shows a 1-D vector parameter study using the Textbook Exa
on page 192. It is available in the test directory asDakota/test/dakota_pstudy.in .

interface, \
application system, \
 asynchronous \
 analysis_driver = ‘text_book’

variables, \
continuous_design = 3 \
 cdv_initial_point 1.0 1.0 1.0

responses, \
num_objective_functions = 1 \
num_nonlinear_constraints = 2 \
analytic_gradients \
analytic_hessians

method, \
 vector_parameter_study \

 step_vector = .1 .1 .1 \
 num_steps = 4

Sample 5: Multilevel Hybrid Strategy

The following sample input file shows a multilevel hybrid strategy using three iterators. It
employs a genetic algorithm, coordinate pattern search and full Newton gradient-based
optimization in succession to solve the Textbook Example on page 192. It is available in th
directory asDakota/test/dakota_multilevel.in .

strategy, \
multi_level uncoupled \
 method_list = ‘GA’ ‘CPS’ ‘NLP’

method, \
sgopt_pga_real \
 id_method = ‘GA’ \
 variables_pointer = ‘V1’ \
 interface_pointer = ‘I1’ \
 responses_pointer = ‘R1’ \
 population_size = 10 \
 verbose output

method, \
sgopt_coord_sps \
 id_method = ‘CPS’ \
 variables_pointer = ‘V1’ \
 interface_pointer = ‘I1’ \
 responses_pointer = ‘R1’ \
 verbose output \
 initial_delta = 0.1 \
 threshold_delta = 1.e-4 \
 solution_accuracy = 1.e-10 \
 exploratory_moves best_first

method, \
 optpp_newton \

 id_method = ‘NLP’ \
 variables_pointer = ‘V1’ \
 interface_pointer = ‘I1’ \
 responses_pointer = ‘R2’ \
 gradient_tolerance = 1.e-12 \
 convergence_tolerance = 1.e-15
User’s Instructions Commands Introduction - Sample dakota.in Files 122

eside

lled
le
tables
interface, \
id_interface = ‘I1’ \
application direct, \
 analysis_driver= ‘text_book’

variables, \
id_variables = ‘V1’ \
continuous_design = 2 \
 cdv_initial_point 0.6 0.7\
 cdv_upper_bounds 5.8 2.9 \
 cdv_lower_bounds 0.5 -2.9 \
 cdv_descriptor ‘x1’ ‘x2’

responses, \
id_responses = ‘R1’ \
num_objective_functions = 1 \
no_gradients \
no_hessians

responses, \
id_responses = ‘R2’ \
num_objective_functions = 1 \
analytic_gradients \
analytic_hessians

Running DAKOTA

Basic information required for running DAKOTA includes the name and location of the
executable program and the command line syntax and options.

Executable Location

Remote installations

After installing and building the system from a new code distribution (see Distributions and
Checkouts on page 180 and Basic Installation on page 180), the DAKOTA executable will r
in Dakota/src/<canonical_build_dir>/dakota , where the canonical name
describes the platform and operating system under which the executable was built (e.g.,sparc-
sun-solaris2.5.1). Thedakota file in theDakota/test directory is a soft link to the
Dakota/src/<canonical_build_dir>/dakota executable.

Sandia developer-supported installations

The DAKOTA executable will have already been built by the DAKOTA developers and insta
in /usr/local/bin on the supported server machines. For file systems shared by multip
platforms, simplified canonical names are sometimes used to distinguish between the execu
(e.g.,dakota_sun , dakota_hp , dakota_sgi , dakota_ibm , etc.). For file systems
unique to a single platform (as is generally the case with/usr/local/bin), dakota without
any canonical modifiers is used.
User’s Instructions Commands Introduction - Running DAKOTA 123

d

rt

e

of

ell
de
file
e.

 an
For the following discussions, it will be assumed that an executable nameddakota is available
in the user’s path.

Command Line Inputs

Executing the program with the following syntax:
dakota

will result in the following usage message which describes the various optional and require
command line inputs:

usage: dakota [options and <args>]

-help (Print this summary)
-input <$val> (REQUIRED Dakota Problem Description file $val)
-read_restart <$val> (Read a previously written Dakota restart log file

$val)
-stop_restart <$val> (Stop restart file processing at evaluation $val)
-write_restart [$val] (Write a new Dakota restart log file $val)

Of these available command line inputs, only the “-input ” option is required. The command
line input parser implemented in theCommandLineHandler class allows abbreviation so long
as the abbreviation is unique. For example “-i ” is commonly used in place of “-input .”

The “-help ” option prints the usage message above. The “-input ” option provides the name
of the DAKOTA input file (see Sample dakota.in Files on page 118 for examples). The “-
read_restart ” and “-write_restart ” command line inputs provide the names of resta
databases to read from and write to, respectively. The “-stop_restart ” command line input
limits the number of function evaluations read from the restart database (the default is all th
evaluations) for those cases in which some evaluations were erroneous or corrupted.

Execution Syntax

Input/Output Management

To run DAKOTA with a particular input file, the following syntax can be used:
dakota -i dakota.in

This will echo stdout and stderr to the terminal. To redirect output to a file, any of a variety
redirection variants can be used. The simplest of these redirects stdout:

dakota -i dakota.in > dakota.out

To append to a file rather than overwrite it, “>>” is used in place of “>”. To redirect stderr as w
as stdout, a “&” is appended with no embedded space, i.e. “>&” or “>>&” is used. To overri
the noclobber environment variable (if set) in order to allow overwriting of an existing output
or appending of a file that does not yet exist, a “!” is appended with no embedded space, i.
“>!”, “>&!”, “>>!”, or “>>&!” is used.

To run the dakota process in the background, append an ampersand to the command with
embedded space, e.g.:
User’s Instructions Commands Introduction - Running DAKOTA 124

e

all of

 may

t file
is

te
dakota -i dakota.in > dakota.out &

Refer to [Anderson, G., and Anderson, P., 1986] for more information on redirection and
background commands.

Restart Management

To write a restart file using a particular name, the-write_restart command line input is
used:

dakota -i dakota.in -write_restart my_restart_file

If no -write_restart specification is used, then DAKOTA will write a restart file using th
default namedakota.rst .

To restart DAKOTA from a restart file, the-read_restart command line input is used:
dakota -i dakota.in -read_restart my_restart_file

If no -read_restart specification is used, then DAKOTA will not read restart information
from any file (i.e., the default is no restart processing).

If the -write_restart and-read_restart specifications identify the same file
(including the case where-write_restart is not specified and-read_restart identifies
dakota.rst), then new evaluations will be appended to the existing restart file. If the-
write_restart and-read_restart specifications identify different files, then the
evaluations read from the file identified by-read_restart are first written to the-
write_restart file. Any new evaluations are then appended to the-write_restart file.
In this way, restart operations can be chained together indefinitely with the assurance that
the relevant evaluations are present in the latest restart file.

To read in only a portion of a restart file, the-stop_restart control is used. Note that the
integer value specified refers to the number of entries to be read from the database, which
differ from the evaluation number in the previous run if any duplicates were detected (since
duplicates are not replicated in the restart file). In the case of a-stop_restart specification,
it is usually desirable to specify a new restart file using-write_restart so as to remove the
records of erroneous or corrupted function evaluations. For example, to read in the first 50
evaluations fromdakota.rst :

dakota -i dakota.in -read_restart dakota.rst
-stop_restart 50 -write_restart dakota_new.rst

Thedakota_new.rst file will contain the 50 processed evaluations fromdakota.rst as

well as any new evaluations. All evaluations following the 50th in dakota.rst have been
removed from the latest restart record.

DAKOTA’s restart algorithm relies on its duplicate detection capabilities. Processing a restar
populates the list of function evaluations that have been performed. Then, when the study
reinitiated, many of the function evaluations requested by the iterator are intercepted by the
duplicate detection code. This approach has the primary advantage of restoring the comple
state of the iteration (including the ability to correctly detect subsequent duplicates) for all
User’s Instructions Commands Introduction - Running DAKOTA 125

ever,
ations

le

p),

cur
ord,

 in
e

 one or

onal

ich
iterators and multi-iterator strategies without the need for iterator-specific restart code. How
the possibility exists for numerical round-off error to cause a divergence between the evalu
performed in the previous and restarted studies. This has been extremely rare to date.

Tabular descriptions

In the following discussions of keyword specifications, tabular formats (Table 9 through Tab
56) are used to present a short description of the specification, the actual syntax of the
specification fromdakota.input.spec , a sample specification as it would appear in an
input file, the status of the specification (required, optional, required group, or optional grou
and the default for an optional specification.

It can be difficult to capture in a simple tabular format the complex relationships that can oc
when specifications are nested within multiple groupings. For example, in an interface keyw
theparameters_file specification is an optional specification within a required group
specification (system) separated from another required group specification (direct) by a
logical OR. The selection ofsystem or direct is contained within another required group
specification (application) separated from other required group specifications
(approximation , test) by logical OR’s. Thus, concisely describing a specification status
a table fails to capture the complete picture of the specification inter-relationships which ar
present indakota.input.spec .

To better capture these relationships, this documentation presents the various group
specifications in separate tables. Details of the outermost required groups are presented in
more tables (e.g.,application versusapproximation versustest in Table 10, Table 13,
and Table 14), and details of each of the innermost required groups are presented in additi
tables (e.g.,system versusdirect in Table 11 and Table 12). Ellipsis (...) are used within
tabular entries for group specifications to denote omissions from the group specification wh
are explained in subsequent table entries.
User’s Instructions Commands Introduction - Tabular descriptions 126

olve

 the

 on
 of

rt of
e

ich
 and
 be

se
Interface Commands
Description on page 127Specification on page 128Set Identifier on page 128Application Interface on page 129Approximation Interface on page 132Test Interface on page 133

Description

The interface section in a DAKOTA input file specifies how function evaluations will be
performed. The three mechanisms currently in place for performing function evaluations inv
interfacing with a simulation, an approximation, or a test function. In the former case of a
simulation, theapplication interface is used to invoke the simulation with either system
calls or direct function calls. In the system call case, communication between DAKOTA and
simulation occurs through parameter and response files, and in the direct function case,
communication occurs through the function parameter list. More information and examples
interfacing with simulations is provided in The Application Interface on page 79. In the case
an approximation, anapproximation interface can be selected to make use of surrogate
modeling capabilities available within DAKOTA’sApproximationInterface class hierarchy (see
The Approximation Interface on page 95). Lastly, atest interface can be selected for direct
access to polynomial test functions which are compiled into the DAKOTA executable as pa
the direct function capability (see The Direct Function Application Interface on page 80). Th
test interface provides a means for testing algorithms and strategies without system call
overhead and without the expense of engineering simulations.

Several examples follow. The first example shows an application interface specification wh
specifies the use of system calls, the names of the analysis executable and the parameters
results files, that separate filters will not be used, that no special analysis usage syntax will
specified, and that parameters and responses files will be tagged and saved. Refer to The
Application Interface on page 79 for more information on the use of these options.

interface,\
application system,\
 input_filter = ‘NO_FILTER’\
 output_filter = ‘NO_FILTER’\
 analysis_driver = ‘rosenbrock’\
 parameters_file = ‘params.in’\
 results_file = ‘results.out’\
 analysis_usage = ‘DEFAULT’\
 file_tag\
 file_save

The next example shows an approximation interface specification which invokes the respon
surface approximation methodology.

interface,\
approximation,\
 response_surface

The next example shows an test interface specification which specifies use of thetext_book
internal test function.

interface,\
test = ‘text_book’
User’s Instructions Interface Commands - Description 127

t the

e by

cs of
owing

e

ose

e
rizes
Specification

The interface specification has the following structure:
interface,\

<set identifier>\
<application specification>

or <approximation specification>
or <test specification>

Referring to the IDR Input Specification File on page 112, it is evident from the brackets tha
set identifier is an optional specification, and from the three required groups (enclosing in
parentheses) separated by OR’s, that one and only one of the three interface specifications
(application , approximation , or test) must be provided.

The optional set identifier can be used to provide a unique identifier string for labeling a
particular interface specification. A method can then identify the use of a particular interfac
specifying this label in itsinterface_pointer specification (see Method Commands on
page 156). The application, approximation, or test specification is used to define the specifi
the interface to be used by a method for the mapping of parameters into responses. The foll
sections describe each of these interface specifications in additional detail.
Developer’s notes: In the C++ implementation, the different interface classes are part of theDakotaInterface class
hierarchy which uses the virtualmap function to polymorphically define the interface’s functionality. This allows th
specific identity and complexities of the interface to be hidden from the method since the use of themapfunctionality
is common among all interfaces.

Set Identifier

The optional set identifier specification uses the keywordid_interface to input a string for
use in identifying a particular interface specification with a particular method (see also
interface_pointer in the Method Commands on page 156). For example, a method wh
specification containsinterface_pointer = ‘I1’ will use an interface specification with
id_interface = ‘I1’ .

It is appropriate to omit anid_interface string in the interface specification and a
correspondinginterface_pointer string in the method specification if only one interface
specification is included in the input file, since the binding of a method to an interface is
unambiguous in this case. More specifically, if a method omits specifying an
interface_pointer , then it will use the last interface specification parsed, which has th
least potential for confusion when only a single interface specification exists. Table 9 summa
the set identifier inputs.
User’s Instructions Interface Commands - Specification 128

the
ystem

ction
to
nt
t data
l

 for
call

ation
ll and

lysis
Application Interface

The application interface uses a simulator program, and optionally filter programs, to perform
parameter to response mapping. The simulator and filter programs are invoked with either s
calls or direct function calls. In the former case, files are used for transfer of parameter and
response data between DAKOTA and the simulator program. This approach is simple and
reliable and does not require any modification to simulator programs. In the latter direct fun
case, the function parameter list is used to pass data. This approach requires modification
simulator programs so that they can be linked into DAKOTA; however it can be more efficie
through the elimination of system call overhead, can be less prone to loss of precision in tha
can be passed directly rather than written to and read from a file, and can enable multileve
parallelism through MPI communicator partitioning as described in Implementation of
Parallelism on page 104.

The application interface group specification contains several specifications which are valid
all application interfaces as well as additional specifications pertaining specifically to system
and direct application interfaces. Table 10 summarizes the specifications valid for all applic
interfaces, and Table 11 and Table 12 summarize the additional specifications for system ca
direct application interfaces. In Table 10, the names of the input filter, output filter, and ana
driver executables are supplied as strings using theinput_filter , output_filter , and
analysis_driver specifications. Both the system call and direct function application
interfaces use these same specifications. Theanalysis_driver specification is required, and
the input_filter andoutput_filter specifications are optional with the default
behavior of no filter usage (string default is‘NO_FILTER’). If no filters are used, then the
interface is called a “1-piece Interface”; if filters are used, it is called a “3-piece Interface.”
Failure capturing in application interfaces is governed by thefailure_capture
specification. Supported directives for mitigating captured failures, as described in Failure
capturing on page 93, areabort , retry , recover , andcontinuation .

Table 9 Specification detail for set identifier

Description Specification Sample Status Default

Interface set
identifier

[id_interface =
<STRING>]

id_interface = ‘I1’ Optional use of last
interface parsed

Table 10 Specification detail for application interfaces

Description Specification Sample Status Default

Application
interface

({application} ...) application Required
group

N/A

Input filter [input_filter = <STRING>] input_filter =
‘ifilter.exe’

Optional no input
filter
User’s Instructions Interface Commands - Application Interface 129

e
the

ce
ll

r to

e
ce on
ata

all
 the
rs and
lled
Note that the recent additions ofconcurrent_drivers , pre_driver , and
post_driver to dakota.input.spec is a placeholder for the level of parallelism
involving concurrent analyses within a function evaluation (see Pending Extensions on pag
104). This capability will be described in the V1.2 release where it will likely be merged with
existing facility to becomeinput_filter , analysis_driver s , andoutput_filter
(in which the use of a single analysis driver becomes a special case of the generalized
specification).

In addition to the general application interface specifications, the type of application interfa
involves a selection betweensystem or direct required group specifications. For system ca
application interfaces,asynchronous , parameters_file , results_file ,
analysis_usage , aprepro , file_tag , andfile_save are additional settings within
the group specification. Asynchronous function evaluations (system calls placed in the
background with “&”) can be specified with theasynchronous specification, whereas the
default behavior is synchronous function evaluations (system calls in the foreground). Refe
Enabling Software Components on page 100 for additional information on asynchronous
procedures. The parameters and results file names are supplied as strings using the
parameters_file andresults_file specifications. Both specifications are optional
with the default data transfer files being temporary files (e.g.,/usr/tmp/aaaa08861 , see
Unix temporary files on page 83). The parameters and results file names are passed on th
command line of the system calls (refer to 1-piece Interface on page 82 and 3-piece Interfa
page 81 for details). The format of the data in these files is as described in DAKOTA File D
Formats on page 85 with the APREPRO format option for parameters files invoked via the
aprepro specification. Special analysis command syntax can be entered as a string using
analysis_usage . This special syntax replaces theanalysis_driver portion of
DAKOTA’s system call; however, it does not affect theinput_filter andoutput_filter
syntax (if filters are present). Its default is no special syntax (string default is‘DEFAULT’), such
that theanalysis_driver will be used in the standard way as described in The System C
Application Interface on page 81. File tagging (appending parameters and results files with
function evaluation number; see File tagging on page 82) and file saving (leaving paramete
results files in existence after their use is complete; see File saving on page 82) are contro

Output filter [output_filter =
<STRING>]

output_filter =
‘ofilter.exe’

Optional no output
filter

Analysis driver {analysis_driver =
<STRING>}

analysis_driver =
‘analysis.exe’

Required N/A

Failure capturing [{failure_capture} {abort}
| {retry = <INTEGER>} |
{recover =
<LISTof><REAL>} |
{continuation}]

failure_capture retry
= 5

Optional
group

abort

Table 10 Specification detail for application interfaces

Description Specification Sample Status Default
User’s Instructions Interface Commands - Application Interface 130

no
ved
re
en

he

for

ver, if

es on
Table
with thefile_tag andfile_save flags. If these specifications are omitted, the default is
file tagging (no appended function evaluation number) and no file saving (files will be remo
after a function evaluation). File tagging is most useful when multiple function evaluations a
running simultaneously using files in a shared disk space, and file saving is most useful wh
debugging the data communication between DAKOTA and the simulation. The additional
specifications for system call application interfaces are summarized in Table 11. Refer to T
System Call Application Interface on page 81 for additional details and examples.

For direct application interfaces,asynchronous , evaluation_servers , and
processors_per_evaluation are additional settings within the required group.
Asynchronous function evaluations (POSIX multithreading) can be specified with the
asynchronous specification, whereas the default behavior is synchronous function
evaluations (direct procedure calls). Refer to Enabling Software Components on page 100
additional information on asynchronous procedures. Theevaluation_servers and
processors_per_evaluation specifications are used to configure multiprocessor
partitions for multilevel parallelism. Typically, one or the other is specified to define how the
processors allocated to an iterator are divided into multiprocessor evaluation servers; howe
both are specified and they are not in agreement, thenevaluation_servers takes
precedence. Refer to Specifying Parallelism on page 107 for additional details and exampl
multiprocessor partitions. The direct application interface specifications are summarized in
12.

Table 11 Additional specifications for system call application interfaces

Description Specification Sample Status Default

Application
interface type

({system} ...) system Required
group

N/A

Evaluation
synchronization

[asynchronous] asynchronous Optional synchronous
evaluations

Parameters file
name

[parameters_file =
<STRING>]

parameters_file =
‘params.in’

Optional Unix temp files

Results file name [results_file =
<STRING>]

results_file =
‘results.out’

Optional Unix temp files

Special analysis
usage syntax

[analysis_usage =
<STRING>]

analysis_usage =
‘analysis.exe <
params.in >
results.out’

Optional standard
analysis usage

Aprepro format [aprepro] aprepro Optional standard format

File tag [file_tag] file_tag Optional no tagging

File save [file_save] file_save Optional no saving
User’s Instructions Interface Commands - Application Interface 131

ate
ated

uce

ial
Approximation Interface

The approximation interface uses an approximate representation of a true model (a surrog
model) to perform the parameter to response mapping. This approximation is built and upd
using data from the true model as described in The Approximation Interface on page 95.
Approximation interfaces are used extensively in the sequential approximate optimization
strategy (see Sequential Approximate Optimization on page 74), in which the goal is to red
expense by minimizing the number of function evaluations performed with the true model.

The approximation interface specification requires the specification of one of the following
approximation methods:neural_network , response_surface , multi_point , or
mars_surface . These specifications invoke a layered perceptron artificial neural network
approximation (see the The ANN Approximation Interface on page 98), a quadratic polynom
response surface approximation (see The RSM Approximation Interface on page 97), a
multipoint approximation (not yet available), or a multivariate adaptive regression spline
approximation (see The MARS Approximation Interface on page 97), respectively. Table 13
summarizes the approximation interface specification.

Table 12 Additional specifications for direct application interfaces

Description Specification Sample Status Default

Application
interface type

({direct} ...) direct Required
group

N/A

Evaluation
synchronization

[asynchronous] asynchronous Optional synchronous
evaluations

Number of
evaluation servers

[evaluation_servers =
<INTEGER>]

evaluation_servers
= 5

Optional number of
processors
minus 1

Number of
processors per
evaluation

[processors_per_evalu
ation = <INTEGER>]

processors_per_ev
aluation = 256

Optional 1

Table 13 Specification detail for approximation interfaces

Description Specification Sample Status Default

Approximation
interface

({approximation} ...) approximation Required
group

N/A

Type {neural_network} |
{response_surface} |
{multi_point} |
{mars_surface}

neural_network Required N/A
User’s Instructions Interface Commands - Approximation Interface 132

ponse

age

m to

n

Test Interface

The test interface uses an internally available test problem to perform the parameter to res
mapping. These problems are compiled directly into the DAKOTA executable as part of the
direct function application interface class (see The Direct Function Application Interface on p
80) and are used for algorithm testing.

The test interface specification requires the specification of a string to identify the test proble
be used. Table 14 summarizes this specification.

Currently, only the ‘text_book ’ simulator is available as an internal test problem. Informatio
on this problem is available in the Example Problems on page 328.

Table 14 Specification detail for test interfaces

Description Specification Sample Status Default

Test interface {test = <STRING>} test =
‘text_book’

Required N/A
User’s Instructions Interface Commands - Test Interface 133

s
ters

h
n, a
 can be

ptor.
, such
d to

:

ables,
Variables Commands
Description on page 134Specification on page 135Set Identifier on page 136Design Variables on page 136Uncertain Variables on page 138State Variables on page 139

Description

The variables section in a DAKOTA input file specifies the parameter set to be iterated by a
particular method. This parameter set is made up of design, uncertain, and state variable
specifications. Design variables can be continuous or discrete and consist of those variable
which an optimizer adjusts in order to locate an optimal design. Each of the design parame
can have an initial point, a lower bound, an upper bound, and a descriptive tag. Uncertain
variables are continuous variables which are characterized by probability distributions. Eac
uncertain variable specification can contain a distribution type, a mean, a standard deviatio
lower bound, an upper bound, a histogram file name, and a descriptive tag. State variables
continuous or discrete and consist of “other” variables which are to be mapped through the
simulation interface. Each state variable specification can have an initial state and a descri
State variables provide a convenient mechanism for parameterizing additional model inputs
as mesh density, simulation convergence tolerances and time step controls, and will be use
enact model adaptivity in future strategy developments.

Several examples follow. In the first example, two continuous design variables are specified
variables, \

continuous_design = 2 \
 cdv_initial_point 0.9 1.1 \
 cdv_upper_bounds 5.8 2.9 \
 cdv_lower_bounds 0.5 -2.9 \
 cdv_descriptor ‘radius’ ‘location’

In the next example, defaults are employed. In this case,cdv_initial_point will default to
a vector of 0.0 values,cdv_upper_bounds will default to vector values ofDBL_MAX
(defined in thefloat.h C header file),cdv_lower_bounds will default to a vector of-
DBL_MAX values, andcdv_descriptor will default to a vector of ‘cdv_i’ strings, wherei
goes from one to two:

variables, \
continuous_design = 2

In the last example, a variables specification containing continuous and discrete design vari
uncertain variables, continuous and discrete state variables, and a set identifier is shown:

variables,\
id_variables = ‘V1’\
continuous_design = 2\
 cdv_initial_point 0.9 1.1\
 cdv_upper_bounds 5.8 2.9 \
 cdv_lower_bounds 0.5 -2.9 \
 cdv_descriptor ‘radius’ ‘location’\
discrete_design = 1\
 ddv_initial_point 2\
 ddv_upper_bounds 1 \
User’s Instructions Variables Commands - Description 134

orted
bles
der
r all

ow to
th
tinuous
or
 to the

r

ian
tives
 ddv_lower_bounds 3 \
 ddv_descriptor ‘material’\
uncertain = 2\
 uv_distribution_type = ‘normal’, ‘lognormal’ \
 uv_means = 250.0 480.0 \
 uv_std_deviations = 12.4 27.1\
 uv_lower_bounds = 220.0 410.0 \
 uv_upper_bounds = 280.0 550.0 \
 uv_descriptor = ‘T_fail_1’ ‘T_fail_2’\
continuous_state = 2\
 csv_initial_state = 1.e-4 1.e-6\
 csv_descriptor = ‘EPSIT1’ ‘EPSIT2’\
discrete_state = 1\
 dsv_initial_state = 100\
 dsv_descriptor = ‘load_case’

The most general case of having a mixture of each of the different types of variables is supp
within all of the iterators even though certain iterators will only modify certain types of varia
(e.g., optimizers only modify design variables). This implies that variables which are not un
the direct control of a particular iterator will be mapped through the interface unmodified fo
evaluations of the iterator. This allows for a variety of parameterizations within the model in
addition to those which are being used by a particular iterator.

Supporting the most general case is more difficult since decisions have to be made about h
appropriately size gradient vectors and Hessian matrices. Derivatives are never needed wi
respect to any discrete variables (since these derivatives do not exist) and the types of con
variables for which derivatives are needed depend on the type of study being performed. F
optimization and least squares problems, function derivatives are only needed with respect
continuous design variables since this is the information used by the optimizer in computing a
search direction. Similarly, for nondeterministic analysis methods which use gradient and/o
Hessian information, function derivatives are only needed with respect to theuncertain
variables. And lastly, parameter study methods which are cataloguing gradient and/or Hess
information do not draw a distinction among continuous variables; therefore, function deriva
must be supplied with respect toall continuous variables that are specified (continuous design,
uncertain, and continuous state variables).

Specification

The variables specification has the following structure:
variables, \

<set identifier>\
<continuous design variables specification>\
<discrete design variables specification>\
<uncertain variables specification>\
<continuous state variables specification>\
<discrete state variables specification>
User’s Instructions Variables Commands - Specification 135

ertain,
er is a

s

rtain,
ose
 type
error

ts in

ose

od

sts,

us
s, and
Referring to the IDR Input Specification File on page 112, it is evident from the enclosing
brackets that the set identifier specification and the continuous design, discrete design, unc
continuous state, and discrete state variables specifications are all optional. The set identifi
stand-alone optional specification, whereas the latter five are optionalgroup specifications,
meaning that the group can either appear or not as a unit. If any part of an optional group i
specified, then all required parts of the group must appear.

The optional set identifier can be used to provide a unique identifier string for labeling a
particular variables specification. A method can then identify the use of a particular set of
variables by specifying this label in itsvariables_pointer specification (see Method
Commands on page 156). The optional status of the continuous and discrete design, unce
and continuous and discrete state variables specifications allows the user to specify only th
variables which are present (rather than explicitly specifying that the number of a particular
of variables = 0). However, at least one type of variables must have nonzero size or an input
message will result. The following sections describe each of these specification componen
additional detail.

Set Identifier

The optional set identifier specification uses the keywordid_variables to input a string for
use in identifying a particular variables set with a particular method (see also
variables_pointer in the Method Commands on page 156). For example, a method wh
specification containsvariables_pointer = ‘V1’ will use a variables set with
id_variables = ‘V1’ .

If the set identifier specification is omitted, a particular variables set will be used by a meth
only if that method omits specifying avariables_pointer and if the variables set was the
last set parsed (or is the only set parsed). In common practice, if only one variables set exi
thenid_variables can be safely omitted from the variables specification and
variables_pointer can be omitted from the method specification(s), since there is no
potential for ambiguity in this case. Table 15 summarizes the set identifier inputs.

Design Variables

Within the optional continuous design variables specification group, the number of continuo
design variables is a required specification and the initial guess, lower bounds, upper bound

Table 15 Specification detail for set identifier

Description Specification Sample Status Default

Variables set
identifier

[id_variables =
<STRING>]

id_variables = ‘V1’ Optional use of last
variables
parsed
User’s Instructions Variables Commands - Set Identifier 136

thin
iables
names

 and
e
te

les,
variable names of the continuous design variables are optional specifications. Likewise, wi
the optional discrete design variables specification group, the number of discrete design var
is a required specification and the initial guess, lower bounds, upper bounds, and variable
of the discrete design variables are optional specifications. Default values for optional
specifications include zeros for initial values, positive and negative machine limits for upper
lower bounds, and numbered strings for descriptors. Table 16 summarizes the details of th
continuous design variable specification and Table 17 summarizes the details of the discre
design variable specification.

Thecdv_initial_point andddv_initial_point specifications provide the point in
design space from which an iterator is started for the continuous and discrete design variab
respectively. Thecdv_lower_bounds , ddv_lower_bounds , cdv_upper_bounds and

Table 16 Specification detail for continuous design variables

Description Specification Sample Status Default

Continuous
design variables

[{continuous_design =
<INTEGER>} ...]

continuous_desig
n = 4

Optional
group

no continuous
design variables

Initial point [cdv_initial_point =
<LISTof><REAL>]

cdv_initial_point
= 1.,2.1,0.3,4.2

Optional Vector values =
0.0

Lower bounds [cdv_lower_bounds =
<LISTof> <REAL>]

cdv_lower_bound
s = -1.,-2.,0.,-4.2

Optional Vector values =
-DBL_MAX

Upper bounds [cdv_upper_bounds =
<LISTof> <REAL>]

cdv_upper_bound
s = 5.2,6.3,6.6,9.1

Optional Vector values =
+DBL_MAX

Descriptors [cdv_descriptor = <LISTof>
<STRING>]

cdv_descriptor =
‘c1’, ’c2’, ’c3’,
’c4’

Optional Vector of
‘cdv_i’ where i
= 1,2,3...

Table 17 Specification detail for discrete design variables

Description Specification Sample Status Default

Discrete design
variables

[{discrete_design =
<INTEGER>} ...]

discrete_design =
2

Optional
group

no discrete
design
variables

Initial point [ddv_initial_point =
<LISTof> <INTEGER>]

ddv_initial_point=
3, 5

Optional Vector values =
0

Lower bounds [ddv_lower_bounds =
<LISTof> <INTEGER>]

ddv_lower_bounds
= 0, 0

Optional Vector values =
INT_MIN

Upper bounds [ddv_upper_bounds =
<LISTof> <INTEGER>]

ddv_upper_bounds
= 10, 10

Optional Vector values =
INT_MAX

Descriptors [ddv_descriptor = <LISTof>
<STRING>]

ddv_descriptor =
‘d1’, ’d2’

Optional Vector of
‘ddv_i’ where i
= 1,2,3,...
User’s Instructions Variables Commands - Design Variables 137

 to
tants

ese

es
ower
hat is,
bles
he

e

ddv_upper_bounds restrict the size of the feasible design space and are frequently used
prevent nonphysical designs. The defaults for these bounds are linked to architecture cons
(DBL_MAX, INT_MAX, INT_MIN) which are defined in thefloat.h andlimits.h system
header files. Thecdv_descriptor andddv_descriptor specifications supply strings
which will be replicated through the Dakota output to help identify the numerical values for th
parameters.

Uncertain Variables

Within the optional uncertain variables specification group, the number of uncertain variabl
and the distribution types are required specifications and the means, standard deviations, l
bounds, upper bounds, histogram file names, and descriptors are optional specifications. T
if the uncertain variables group specification is included, then the number of uncertain varia
and distribution types must be supplied at a minimum, whereas the other specifications in t
group can rely on default values. Table 18 summarizes the details of the uncertain variable
specification.

Theuv_distribution_type vector identifies the type of distribution used to describe th
statistics of each uncertain variable. Allowable distribution types are currently ‘normal’,
‘lognormal’, ‘constant’, ‘uniform’, ‘loguniform’, ‘weibull’, ‘logweibull’, and ‘histogram’. The

Table 18 Specification detail for uncertain variables specification

Description Specification Sample Status Default

Uncertain
variables

[{uncertain =
<INTEGER>} ...]

uncertain = 2 Optional
group

no uncertain
variables

Distribution type {uv_distribution_type =
<LISTof> <STRING>}

uv_distribution_type =
‘normal’, ‘lognormal’

Required N/A

Means [uv_means = <LISTof>
<REAL>]

uv_means = 250., 480. Optional Vector values
= 0

Standard
deviations

[uv_std_deviations =
<LISTof> <REAL>]

uv_std_deviations =
12.4, 27.1

Optional Vector values
= 0

Lower bounds [uv_lower_bounds =
<LISTof> <REAL>]

uv_lower_bounds =
220., 410.

Optional Vector values
= -DBL_MAX

Upper bounds [uv_upper_bounds =
<LISTof> <REAL>]

uv_upper_bounds =
280., 550.

Optional Vector values
= +
DBL_MAX

Histogram file
names

[uv_filenames =
<LISTof> <STRING>]

uv_filenames =
‘T_fail1.dat’,
‘T_fail2.dat’

Optional no histogram
file names

Descriptors [uv_descriptor =
<LISTof> <STRING>]

uv_descriptor =
‘T_fail1’, ‘T_fail2’

Optional Vector of
‘uv_i’ where i
= 1,2,3,...
User’s Instructions Variables Commands - Uncertain Variables 138

s
nt,

d

e.

s
tor

ns and
ient
tion

 state
uv_means anduv_std_deviations specifications provide this data for those distribution
which are characterized by means and standard deviations (normal and weibull are; consta
uniform, and histogram are not). Likewise, theuv_lower_bounds anduv_upper_bounds
restrict the tails of the distributions for those distributions for which bounds are meaningful.
Default bounds are linked to an architecture constant (DBL_MAX) defined in thefloat.h
system header file. Theuv_filenames specification provides the file names for variables of
the histogram distribution type. Theuv_descriptor specification provides strings which will
be replicated through the Dakota output to help identify the numerical values for these
parameters.

Each of the vector inputs, if specified, must be of length equal to the number of uncertain
variables. Since certain distribution types may not have values for each of theuv_means ,
uv_std_deviations , uv_lower_bounds , uv_upper_bounds , anduv_filenames
specifications, these arrays should be padded with place holders. For example, if
uv_distribution_type = ‘normal’, ‘uniform’, ‘histogram’, thenuv_std_deviations
might equal 12.0, 0, 0 where the trailing 0’s are place holders in the array since uniform an
histogram distributions do not specify standard deviations. Likewise,uv_filenames would be
specified as ‘’, ‘’, ‘file.dat’ since only the histogram distribution type requires a file name
specification. This behavior was chosen since it is believed to be more readable at a glanc

State Variables

Within the optional continuous state variables specification group, the number of continuou
state variables and their initial states are required specifications and the continuous descrip
vector is an optional specification. Likewise, within the discrete state variables specification
group, the number of discrete state variables and their initial states are required specificatio
the discrete descriptor vector is an optional specification. These variables provide a conven
mechanism for managing additional model parameterizations such as mesh density, simula
convergence tolerances, and time step controls. Table 19 summarizes the details of the
continuous state variable specification and Table 20 summarizes the details of the discrete
variable specification.

Table 19 Specification detail for continuous state variables

Description Specification Sample Status Default

Continuous state
variables

[{continuous_state =
<INTEGER>} ...]

continuous_state
= 2

Optional
group

No continuous
state variables

Initial states {csv_initial_state =
<LISTof><REAL>}

csv_initial_state
= 3.1, 4.2

Required N/A

Descriptors [csv_descriptor =
<LISTof><STRING>]

csv_descriptor =
‘EPSIT1’,
‘EPSIT2’

Optional Vector of
‘csv_i’ wherei
= 1,2,3,...
User’s Instructions Variables Commands - State Variables 139

Thecsv_initial_state anddsv_initial_state specifications define the initial
values for the continuous and discrete state variables which will be passed through to the
simulator (e.g., in order to define parameterized modeling controls). Thecsv_descriptor
anddsv_descriptor vectors provide strings which will be replicated through the Dakota
output to help identify the numerical values for these parameters.

Table 20 Specification detail for discrete state variables

Description Specification Sample Status Default

Discrete state
variables

[{discrete_state =
<INTEGER>} ...]

discrete_state =
2

Optional
group

No discrete
state variables

Initial states {dsv_initial_state =
<LISTof><REAL>}

dsv_initial_state
= 3, 4

Required N/A

Descriptors [dsv_descriptor =
<LISTof><STRING>]

dsv_descriptor =
‘material1’,
‘material2’

Optional Vector of
‘dsv_i’ wherei
= 1,2,3,...
User’s Instructions Variables Commands - State Variables 140

ered
ns,
is

the
rt of
 then
se of

s). In
tions
rators
ame

etation

 one

 finite

y the

ibes

ve set
Responses Commands
Description on page 141Specification on page 142Set Identifier on page 143Active Set Vector Usage on page 143Function specification on page 144 Objective and Constraint Functions (Optimization Data Set) on page 144Least Squares Terms (Least Squares Data Set) on page 145Response Functions (Generic Data Set) on page 145Gradient specification on page 146 No Gradients on page 146Numerical Gradients on page 146Analytic Gradients on page 147Mixed Gradients on page 147Hessian specification on page 148 No Hessians on page 148Analytic Hessians on page 149

Description

The responses specification in a DAKOTA input file specifies the data set that can be recov
from the interface during the course of iteration. This data set is made up of a set of functio
their first derivative vectors (gradients), and their second derivative matrices (Hessians). Th
abstraction provides a generic data container (theDakotaResponse class) whose contents are
interpreted differently depending upon the type of iteration being performed. In the case of
optimization, the set of functions consists of an objective function (or objective functions in
case of multiobjective optimization) and nonlinear constraints. Linear constraints are not pa
a response set since their coefficients can be communicated to an optimizer at startup and
computed internally for all function evaluations (see NPSOL Method on page 162). In the ca
least squares iterators, the functions consist of individual residual terms (not the sum of the
squares objective function; this function is computed internally by the least squares iterator
the case of nondeterministic iterators, the function set is made up of generic response func
for which the effect of parameter uncertainty is to be quantified. Lastly, parameter study ite
may be used with any of the response data set types. Within the C++ implementation, the s
data structures are used to provide each of these response data set types; only the interpr
of the data varies from iterator branch to iterator branch.

Gradient availability may be described byno_gradients , numerical_gradients ,
analytic_gradients, or mixed_gradients . “no_gradients ” means that gradient
information is not needed in the study. “numerical_gradients ” means that gradient
information is needed and will be computed with finite differences using either the native or
of the vendor finite differencing routines. “analytic_gradients ” means that gradient
information is available directly from the simulation (finite differencing is not required). And
“mixed_gradients ” means that some gradient information is available directly from the
simulation whereas the rest will have to be finite differenced.

Hessian availability may be described byno_hessians or analytic_hessians where the
meanings are the same as for the corresponding gradient availability settings. Numerical
Hessians are not currently supported, since, in the case of optimization, this would imply a
difference-Newton technique for which a direct algorithm already exists. Capability for
numerical Hessians can be added if the need arises.

The responses specification provides a description of the data set that is available for use b
iteratorduring the course of its iteration. This should be distinguished from the data set
described in an active set vector (see DAKOTA File Data Formats on page 85) which descr
the subset of the available data neededon a particular function evaluation. Put another way, the
responses specification is a broad description of the data that is available whereas the acti
vector describes the particular subset of the available data that is currently needed.
User’s Instructions Responses Commands - Description 141

bility

ions
tral

 The
alues

e
.

each

tions,
t

Several examples follow. The first example shows an optimization data set of an objective
function and two nonlinear constraints. These three functions have analytic gradient availa
and no Hessian availability.

responses,\
num_objective_functions = 1\
num_nonlinear_constraints = 2\
analytic_gradients\
no_hessians

The next example shows a specification for a least squares data set. The six residual funct
will have numerical gradients computed using the dakota finite differencing routine with cen
differences of 0.1% (plus/minus delta value = .001*value).

responses,\
num_least_squares_terms = 6\
numerical_gradients\
method_source dakota\
interval_type central\
fd_step_size = .001\
no_hessians

The last example shows a specification that could be used with a nondeterministic iterator.
three response functions have no gradient or Hessian availability; therefore, only function v
will be used by the iterator.

responses,\
num_response_functions = 3\
no_gradients\
no_hessians

Parameter study iterators are not restricted in terms of the response data sets which may b
catalogued; they may be used with any of the function specification examples shown above

Specification

The responses specification has the following structure:
responses, \

<set identifier>\
<active set vector usage>\
<function specification>\
<gradient specification>\
<hessian specification>

Referring to the IDR Input Specification File on page 112, it is evident from the enclosing
brackets that the set identifier and the active set vector usage specifications are optional.
However, the function, gradient, and Hessian specifications are all required specifications,
of which contains several possible specifications separated by logical OR’s. The function
specification must be one of three types: 1) a group containing objective and constraint func
2) a least squares terms specification, or 3) a response functions specification. The gradien
specification must be one of four types: 1) no gradients, 2) numerical gradients, 3) analytic
User’s Instructions Responses Commands - Specification 142

ns or

nse set
n
ons
sible
 the
these

ose

at

n

s

ts,
gradients, or 4) mixed gradients. And the Hessian specification must be either 1) no Hessia
2) analytic Hessians.

The optional set identifier can be used to provide a unique identifier string for labeling a
particular responses specification. A method can then identify the use of a particular respo
by specifying this label in itsresponses_pointer specification (see Method Commands o
page 156). The active set vector usage setting allows the user to turn off active set distincti
(default is on) so that a simulation interface can neglect to include active set logic (at the pos
penalty of wasted computations). The function, gradient, and Hessian specifications define
data set that can be recovered from the interface. The following sections describe each of
specification components in additional detail.

Set Identifier

The optional set identifier specification uses the keywordid_responses to input a string for
use in identifying a particular responses set with a particular method (see also
responses_pointer in the Method Commands on page 156). For example, a method wh
specification containsresponses_pointer = ‘R1’ will use a responses set with
id_responses = ‘R1’ .

If this specification is omitted, a particular responses set will be used by a method only if th
method omits specifying aresponses_pointer and if the responses set was the last set
parsed (or is the only set parsed). In common practice, if only one responses set exists, the
id_responses can be safely omitted from the responses specification and
responses_pointer can be omitted from the method specification(s), since there is no
potential for ambiguity in this case. Table 21 summarizes the set identifier inputs.

Active Set Vector Usage

A future capability will be the option to turn the active set vector (ASV) usageon or off .
Currently, only the defaulton setting is supported; its behavior is described in DAKOTA File
Data Formats on page 85. Setting the ASV control tooff will cause Dakota to always request a
“full” data set (the full function, gradient, and Hessian data that is available in the problem a
specified in the responses specification)on each function evaluation. For example, if ASV
control isoff and the responses section specifies four response functions, analytic gradien
and no Hessians, then the ASV onevery function evaluation will be a vector of length four

Table 21 Specification detail for set identifier

Description Specification Sample Status Default

Responses set
identifier

[id_responses =
<STRING>]

id_responses = ‘R1’ Optional use of last
responses
parsed
User’s Instructions Responses Commands - Set Identifier 143

ful of

 and
,
rn

s,

e
that
xt.
 active

ty
 three

 the

r

containing all threes, regardless of what subset of this data is currently needed. While waste
computations in many instances, this removes the need for ASV-related logic in user-built
interfaces. That is, ASV control set toon will result in requests of only that specific data which
is needed on each evaluation and will require the user’s interface to read the ASV requests
perform the appropriate logic in conditionally returning only the data requested. Conversely
ASV control set tooff removes the need for this additional logic and allows the user to retu
the same data set on every evaluation. In general, the defaulton behavior is recommended for
efficiency through the elimination of unnecessary computations, although in some instance
ASV control set tooff can simplify operations and speed filter development for time critical
applications.

Note that in all cases, the data returned to DAKOTA from the user’s interface must match th
ASV passed in (or else a response recovery error will result). The important observation is
when ASV control isoff , the ASV vector values do not change from one evaluation to the ne
Therefore their content need not be checked on every evaluation. Table 22 summarizes the
set vector usage setting.

Function specification

The function specification must be one of three types: 1) a group containing objective and
constraint functions, 2) a least squares terms specification, or 3) a response functions
specification. These function sets correspond to optimization, least squares, and uncertain
quantification iterators, respectively. Parameter study iterators may be used with any of the
function specifications.

Objective and Constraint Functions (Optimization Data Set)

An optimization data set is specified usingnum_objective_functions , and optionally
num_nonlinear_constraints . Multiobjective optimization is not yet supported within
the optimizer branch, sonum_objective_functions should be set to one when using
DOT, NPSOL, OPT++, or SGOPT. Direct input of linear constraints can be used to improve
efficiency of NPSOL (seelinear_constraints in Method Independent Controls on page
158). However, DOT, OPT++, and SGOPT do not yet support specialized handling of linea
constraints; in these cases, any linear constraints should be included in the more general
num_nonlinear_constraints count. Table 23 summarizes the optimization data set
specification.

Table 22 Specification detail for active set vector usage specification

Description Specification Sample Status Default

Active set vector
usage

[{active_set_vector} {on} |
{off}]

active_set_vector on Optional
group

on
User’s Instructions Responses Commands - Function specification 144

ost

on
er

ulator
es a
 the
n case
o
nt

e
 the

n
 the
traint,
d least
Least Squares Terms (Least Squares Data Set)

A least squares data set is specified usingnum_least_squares_terms . Each of these terms
is a residual function to be driven towards zero. These types of problems are commonly
encountered in parameter estimation and model validation. Least squares problems are m
efficiently solved using special-purpose least squares solvers such as Gauss-Newton or
Levenberg-Marquardt; however, they may also be solved using general-purpose optimizati
algorithms. It is important to realize that, while DAKOTA can solve these problems with eith
least squares or optimization algorithms, the response data sets to be returned from the sim
are different. Least squares involves a set of residual functions whereas optimization involv
single objective function (sum of the squares of the residuals). Therefore, derivative data in
least squares case involves derivatives of the least squares terms, whereas the optimizatio
involves derivatives of the sum of the squares objective function. Switching between the tw
approaches will likely require different simulation interfaces capable of returning the differe
granularity of response data required. Table 24 summarizes the least squares data set
specification.

Response Functions (Generic Data Set)

A generic response data set is specified usingnum_response_functions . Each of these
functions is simply a response quantity of interest with no special interpretation taken by th
method in use. This type of data set is used by uncertainty quantification methods, in which
effect of parameter uncertainty on response functions is quantified, and can also be used i
parameter studies (although parameter studies are not restricted to this data set), in which
effect of parameter variations on response functions is evaluated. Whereas objective, cons
and residual functions have special meanings within the data sets used by optimization an
squares algorithms (i.e., their usage is linked to their identity), the response functions in an

Table 23 Specification detail for optimization data sets

Description Specification Sample Status Default

Number of
objective
functions

({num_objective_functions =
<INTEGER>} ...)

num_objective_funct
ions = 1

Required
group

N/A

Number of
nonlinear
constraints

[num_nonlinear_constraints =
<INTEGER>]

num_nonlinear_cons
traints = 2

Optional 0

Table 24 Specification detail for nonlinear least squares data sets

Description Specification Sample Status Default

Number of Least
Squares Terms

{num_least_squares_terms
= <INTEGER>}

num_least_squares_terms
= 20

Required N/A
User’s Instructions Responses Commands - Function specification 145

s due

ne
n data

ts, 3)

y.
s.

e

ernal

ed.
to
l

r

e when
e in

se
uncertainty quantification or parameter study need not have a specific interpretation. This i
primarily to the fact that the values of these response functions are not fed back to these
algorithms as a basis for additional iterative improvement. Therefore, the user is free to defi
whatever functional form is convenient. Table 25 summarizes the generic response functio
set specification.

Gradient specification

The gradient specification must be one of four types: 1) no gradients, 2) numerical gradien
analytic gradients, or 4) mixed gradients.

No Gradients

Theno_gradients specification means that gradient information is not needed in the stud
Therefore, it will neither be retrieved from the simulation nor computed with finite difference
no_gradients is a complete specification for this case.

Numerical Gradients

Thenumerical_gradients specification means that gradient information is needed and
will be computed with finite differences using either the native or one of the vendor finite
differencing routines. Themethod_source setting specifies the source of the finite differenc
routine that will be used to compute the numerical gradients:dakota denotes DAKOTA’s
internal finite differencing algorithm andvendor denotes the finite differencing algorithm
supplied by the iterator package in use (DOT, NPSOL, and OPT++ each have their own int
finite differencing routines). Thevendor routine was chosen as the default since certain
libraries modify their algorithm when they are aware that finite differencing is being perform
Since thedakota routine hides this fact from the optimizers (the optimizers are configured
accept user-supplied gradients, which they assume to be of analytic accuracy), the potentia
exists for thevendor setting to trigger the use of an algorithm more optimized for the highe
expense and/or lower accuracy of finite-differencing (e.g., NPSOL uses gradients in its line
search when in user-supplied gradient mode, but uses a value-based line search procedur
internally finite differencing). However, while this algorithm modification may reduce expens
serial operations, thedakota routine is preferable when seeking to exploit the parallelism in
finite difference evaluations (see Exploiting Parallelism on page 99). And in fact, NPSOL’s u

Table 25 Specification detail for generic response function data sets

Description Specification Sample Status Default

Number of
Response
Functions

{num_response_functi
ons = <INTEGER>}

num_response_functi
ons = 2

Required N/A
User’s Instructions Responses Commands - Gradient specification 146

g for

This

e
arizes

he
ase
of gradients in its line search (user-supplied gradient mode) provides excellent load balancin
parallel optimization without need to resort to speculative optimization approaches. The
interval_type setting is used to select betweenforward andcentral differences in the
numerical gradient calculations. The DAKOTA, DOT, and OPT++ routines have bothforward
andcentral differences available, and NPSOL starts withforward differences and
automatically switches tocentral differences as the iteration progresses (the user has no
control over this). Lastly,fd_step_size specifies therelative finite difference step size to be
used in the computations. For DAKOTA, DOT, and OPT++, the intervals are computed by
multiplying thefd_step_size with the current parameter value. In this case, a minimum
absolute differencing interval is needed when the current parameter value is close to zero.
prevents finite difference intervals for the parameter which are too small to distinguish
differences in the response quantities being computed. DAKOTA, DOT, and OPT++ all use
1.e-2*fd_step_size as their minimum absolute differencing interval. With a
fd_step_size = .001 , for example, DAKOTA, DOT, and OPT++ will use intervals of
.001* current value with a minimum interval of1.e-5 . NPSOL uses a different formula for its
finite difference intervals:fd_step_size*(1+| current parameter value|) . This definition has
the advantage of eliminating the need for a minimum absolute differencing interval since th
interval no longer goes to zero as the current parameter value goes to zero. Table 26 summ
the numerical gradient specification.

Analytic Gradients

Theanalytic_gradients specification means that gradient information is available
directly from the simulation (finite differencing is not required). The simulation must return t
gradient data in the DAKOTA format (see DAKOTA File Data Formats on page 85) for the c
of file transfer of data.analytic_gradients is a complete specification for this case.

Mixed Gradients

Themixed_gradients specification means that some gradient information is available
directly from the simulation (analytic) whereas the rest will have to be finite differenced

Table 26 Specification detail for numerical gradients

Description Specification Sample Status Default

Numerical
gradients

({numerical_gradients} ...) numerical_gradients Required
group

N/A

Method source [{method_source} {dakota} |
{vendor}]

method_source,
dakota

Optional
group

vendor

Interval Type [{interval_type} {forward} |
{central}]

interval_type, forward Optional
group

forward

Finite difference
step size

[fd_step_size = <REAL>] fd_step_size = 0.001 Optional 0.001
User’s Instructions Responses Commands - Gradient specification 147

.g.,

uld

ion.
s.
(numerical). This specification is useful since it is generally wise to make use of as much
analytic gradient information as is available and then to finite difference for the rest. For
example, the objective function may be a simple analytic function of the design variables (e
weight) whereas the constraints are nonlinear implicit functions of complex analyses (e.g.,
maximum stress). Theid_analytic list specifies by number the functions which have
analytic gradients, and theid_numerical list specifies by number the functions which must
use numerical gradients. Themethod_source , interval_type , andfd_step_size
specifications are as described previously under the Numerical Gradients on page 146
specification and pertain to those functions listed by theid_numerical list. Table 27
summarizes the mixed gradient specification.

Hessian specification

Hessian availability must be specified with eitherno_hessians or analytic_hessians .
Numerical Hessians are not currently supported, since, in the case of optimization, this wo
imply a finite difference-Newton technique for which a direct algorithm already exists.
Capability for numerical Hessians can be added if the need arises.

No Hessians

Theno_hessians specification means that the method does not require Hessian informat
Therefore, it will neither be retrieved from the simulation nor computed with finite difference
no_hessians is a complete specification for this case.

Table 27 Specification detail for mixed gradients

Description Specification Sample Status Default

Mixed gradients ({mixed_gradients} ...) mixed_gradients Required
group

N/A

Analytic
derivatives
function list

{id_analytic = <LISTof>
<INTEGER>

id_analytic = 2,4 Required N/A

Numerical
derivatives
function list

{id_numerical = <LISTof>
<INTEGER>}

id_numerical = 1,3,5 Required N/A

Method source [{method_source} {dakota} |
{vendor}]

method_source, dakota Optional
group

vendor

Interval Type [{interval_type} {forward} |
{central}]

interval_type, forward Optional
group

forward

Finite difference
step size

[fd_step_size = <REAL>] fd_step_size = 0.001 Optional 0.001
User’s Instructions Responses Commands - Hessian specification 148

tly
ee
Analytic Hessians

Theanalytic_hessians specification means that Hessian information is available direc
from the simulation. The simulation must return the Hessian data in the DAKOTA format (s
DAKOTA File Data Formats on page 85) for the case of file transfer of data.
analytic_hessians is a complete specification for this case.
User’s Instructions Responses Commands - Hessian specification 149

ern
tegies

he
ges

te
sis
re
l

t in
on.
tion

nty

istics

y

e
sibility
se.

oth

ts to
ely be

tor
Strategy Commands
Description on page 150Specification on page 151Single Method Commands on page 152Multilevel Hybrid Optimization Commands on page 152Sequential Approximate Optimization Commands on page 154Optimization Under Uncertainty Commands on page 154Branch and Bound Commands on page 155

Description

The strategy section in a DAKOTA input file specifies the top level technique which will gov
the management of iterators and models in the solution of the problem of interest. Five stra
currently exist:multi_level , seq_approximate_opt , opt_under_uncertainty ,
branch_and_bound , andsingle_method . In amulti_level optimization strategy, a
list of methods is specified which will be used synergistically in seeking an optimal design.T
goal here is to exploit the strengths of different optimization algorithms through different sta
of the optimization process. Global/local hybrids (e.g., genetic algorithms combined with
nonlinear programming) are a common example in which the desire for a global optimum is
balanced with the need for efficient navigation to a local optimum. In sequential approxima
optimization (seq_approximate_opt), a set of points is selected from a design and analy
of computer experiments (DACE) and evaluated with the simulation model. These results a
then used to build an approximate model, such as a response surface or an artificial neura
network. An optimizer iterates on this approximate model and computes an approximate
optimum. This point is evaluated with the simulation model and the measured improvemen
the simulation model is used to modify the boundaries (i.e., trust region) of the approximati
The approximation is then updated with the new point and additional approximate optimiza
cycles are performed until convergence. The goal withseq_approximate_opt is to reduce
the total number of simulations required for the optimization. In optimization under uncertai
(opt_under_uncertainty), a nondeterministic iterator is used to evaluate the effect of
uncertain variable distributions on responses of interest. These responses and/or their stat
are then included in the objective and constraint functions of an optimization process. The
nondeterministic iteration may be nested within the optimization iteration, nested with
approximations, or segregated in an uncoupled approach. In the branch and bound strateg
(branch_and_bound), mixed continuous/discrete applications can be solved through
parameter domain decomposition and relaxation of integrality constraints. Lastly, the
single_method strategy provides the means for simple execution of a single iterator.

The specification formulti_level involves a list of method identifier strings, and each of th
corresponding method specifications (see Method Commands on page 156) has the respon
for identifying the variables, interface, and responses specifications that each method will u
Theseq_approximate_opt strategy must specify one iterator, an approximate interface,
and an actual interface. The same variables and responses specifications will be used by b
interfaces. Theopt_under_uncertainty strategy must specify the optimization and
nondeterministic iterators and, again, each of the corresponding method specifications poin
the variables, interface, and responses specifications to be used (which, in this case, will lik
different since optimization and nondeterministic methods use different data sets). The
branch_and_bound strategy must specify one iterator and the number of concurrent itera
servers to be utilized. Thesingle_method strategy may specify a method identifier which in
User’s Instructions Strategy Commands - Description 150

king
d,
ddition,

 on
turn specifies the variables, interface, and responses identifiers, or it may specify nothing
additional and invoke the default behavior of employing the last specifications parsed. Invo
the default behavior is particularly appropriate if only one specification is present for metho
variables, interface, and responses since there is no source for confusion in this case. In a
single_method is the default strategy if no strategy specification is supplied.

Example specifications for the five strategies follow. Amulti_level example is:
strategy, \

multi_level uncoupled\
method_list = ‘GA1’, ‘CPS1’, ‘NLP1’

A seq_approximate_opt example specification is:
strategy, \

seq_approximate_opt\
opt_method = ‘NLP1’\
approximate_interface = ‘resp_surf’\
actual_interface = ‘simulation’

An opt_under_uncertainty example specification is:
strategy, \

opt_under_uncertainty\
opt_method = ‘NLP1’\
nond_method = ‘LHS_MC’

A branch_and_bound example specification is:
strategy, \

branch_and_bound\
opt_method = ‘NLP1’\
iterator_servers = 4

A single_method example specification is:
strategy, \

single_method\
method_pointer = ‘NLP1’

In addition to management of multiple iterators and models, the strategy layer manages the
division of operations between master and slave processors. Refer to Exploiting Parallelism
page 99 for additional details.

Specification

The strategy specification has the following structure:
strategy, \

<single_method> or <multi_level> or <seq_approximate_opt>
or
<opt_under_uncertainty> or <branch_and_bound>

Referring to the IDR Input Specification File on page 112, it is evident that the five strategy
specifications (multi_level , seq_approximate_opt , opt_under_uncertainty ,
User’s Instructions Strategy Commands - Specification 151

)

 string
h as

is
rce of

the
ith

 Any
by

oup
branch_and_bound , orsingle_method) are required groups (enclosing in parentheses
separated by OR’s. Thus, one and only one strategy specification must be provided.

The various strategy specifications identify the methods and models (or more specifically,
interfaces) that will be employed in the strategy as well as controls for interaction (e.g.,
switching) between the methods and models. The methods and models are specified using
pointers that correspond to identifier strings in the method and interface specifications (suc
‘method1’ or ‘interface1’). They should NOT be confused with method selections (such as
dot_mmfd) or interface types (such asapplication). The following sections describe each
of these strategy specifications in additional detail.

Single Method Commands

Thesingle_method strategy may be specified using thesingle_method keyword by
itself, or an optionalmethod_pointer may additionally be used to point to a particular
method. For example,method_pointer = ‘NLP1’ points to the method whose
specification containsid_method = ‘NLP1’ . If method_pointer is not used, then the
last method specification parsed will be used as the iterator. Invoking this default behavior
most appropriate if only one method specification is present since there is no potential sou
confusion in this case. Table 28 summarizes thesingle_method strategy inputs.

Refer to Single Method on page 71 for an overview of thesingle_method objects and
algorithm logic.

Multilevel Hybrid Optimization Commands

Themulti_level hybrid optimization strategy has uncoupled, uncoupled adaptive, and
coupled approaches (see Multilevel Hybrid Optimization on page 71 for more information on
algorithms employed). In the two uncoupled approaches, a list of method strings supplied w
themethod_list specification specifies the identity and sequence of iterators to be used.
number of iterators may be specified. The uncoupled adaptive approach may be specified
turning on theadaptive flag. If theadaptive flag in specified, then
progress_threshold must also be specified since it is a required part of the optional gr

Table 28 Specification detail for single_method strategies

Description Specification Sample Status Default

Single method
strategy

({single_method} ...) single_method Required
group

N/A

Method pointer [method_pointer =
<STRING>]

method_pointer =
‘NLP1’

Optional use of last
method
parsed
User’s Instructions Strategy Commands - Single Method Commands 152

curs
cified

-

specification. In the nonadaptive case, method switching is managed through the separate
convergence controls of each method. In the adaptive case, however, method switching oc
when the internal progress metric (normalized between 0.0 and 1.0) falls below the user spe
progress_threshold . Table 29 summarizes the uncoupledmulti_level strategy inputs.

In the coupled approach, global and local method strings supplied with theglobal_method
andlocal_method specifications identify the two methods to be used. The
local_search_probability setting is as optional specification for supplying the
probability (between 0.0 and 1.0) of employing local search to improve estimates within the
global search. Table 30 summarizes the coupledmulti_level strategy inputs.

In either the uncoupled or coupled case, each of the methods listed is responsible for cross
referencing its own variables, interface, and responses specifications (using
interface_pointer , variables_pointer , andresponses_pointer ; see Method
Independent Controls on page 158) within its method specification.

Table 29 Specification detail for uncoupled multi_level strategies

Description Specification Sample Status Default

Multi-level
strategy

({multi_level} ...) multi_level Required
group

N/A

uncoupled
approach

({uncoupled} ...) uncoupled Required
group

N/A

adaptive control [{adaptive}
{progress_threshold =
<REAL>}]

adaptive,
progress_threshold =
0.5

Optional
group

no adaptive
control

List of methods {method_list = <LISTof>
<STRING}

method_list = ‘GA1’,
‘CPS1’, ‘NLP1’

Required N/A

Table 30 Specification detail for coupled multi_level strategies

Description Specification Sample Status Default

Multi-level
strategy

({multi_level} ...) multi_level Required
group

N/A

coupled approach ({coupled} ...) coupled Required
group

N/A

Global method {global_method =
<STRING>}

global_method =
‘GA1’

Required N/A

Local method {local_method =
<STRING>}

local_method =
‘NLP1’

Required N/A

Local search
probability

[local_search_probability
= <REAL>]

local_search_probabi
lity = 0.5

Optional 0.1
User’s Instructions Strategy Commands - Multilevel Hybrid Optimization Commands 153

using

very
Sequential Approximate Optimization Commands

Theseq_approximate_opt strategy must specify an iterator usingopt_method , an
approximate interface usingapproximate_interface , and an application interface using
actual_interface . The method specification identified byopt_method is responsible for
pointing to the variables and responses specifications that will be used by both interfaces (
variables_pointer andresponses_pointer ; see Method Independent Controls on
page 158). Table 31 summarizes theseq_approximate_opt strategy inputs.

Refer to Sequential Approximate Optimization on page 74 for an overview of the
seq_approximate_opt objects and algorithm logic.

Optimization Under Uncertainty Commands

Theopt_under_uncertainty strategy must specify an optimization iterator using
opt_method and a nondeterministic iterator usingnond_method . The method specifications
identified byopt_method andnond_method are responsible for pointing to the variables,
interface, and responses specifications to be used by these methods (using
interface_pointer , variables_pointer , andresponses_pointer ; see Method
Independent Controls on page 158). Since optimization and nondeterministic iteration use
different types of data, the variables, interface, and responses specifications used by these
methods will often be distinct. Table 32 summarizes theopt_under_uncertainty strategy
inputs.

Table 31 Specification detail for seq_approximate_opt strategies

Description Specification Sample Status Default

Sequential
approximate
optimization
strategy

({seq_approximate_opt} ...
)

seq_approximate_opt Required
group

N/A

Optimization
method

{opt_method =
<STRING>}

opt_method = ‘NLP1’ Required N/A

Approximate
interface

{approximate_interface =
<STRING>}

approximate_interface =
‘resp_surf’

Required N/A

Actual interface {actual_interface =
<STRING>}

actual_interface =
‘simulation’

Required N/A

Table 32 Specification detail for opt_under_uncertainty strategies

Description Specification Sample Status Default

Optimization under
uncertainty strategy

({opt_under_uncertaint
y} ...)

opt_under_uncertai
nty

Required
group

N/A
User’s Instructions Strategy Commands - Sequential Approximate Optimization Commands 154

ses
Refer to Optimization Under Uncertainty on page 75 for an overview of the
opt_under_uncertainty objects and algorithm logic.

Branch and Bound Commands

Thebranch_and_bound strategy must specify an iterator usingopt_method and the
number of concurrent iterator servers usingiterator_servers . The method specification
identified byopt_method is responsible for pointing to the variables, interface, and respon
specifications that will be used by the method (usinginterface_pointer ,
variables_pointer , andresponses_pointer ; see Method Independent Controls on
page 158). Table 33 summarizes thebranch_and_bound strategy inputs.

Refer to Branch and Bound on page 76 for an overview of thebranch_and_bound objects
and algorithm logic.

Optimization method {opt_method =
<STRING>}

opt_method =
‘NLP1’

Required N/A

Nondeterministic
method

{nond_method =
<STRING>}

nond_method =
‘LHS_MC’

Required N/A

Table 33 Specification detail for branch_and_bound strategies

Description Specification Sample Status Default

Branch and bound
strategy

({branch_and_bound} ...) branch_and_bound Required
group

N/A

Optimization
method

{opt_method =
<STRING>}

opt_method = ‘NLP1’ Required N/A

Concurrent iterator
servers

{iterator_servers =
<INTEGER>}

iterator_servers = 4 Required N/A

Table 32 Specification detail for opt_under_uncertainty strategies

Description Specification Sample Status Default
User’s Instructions Strategy Commands - Branch and Bound Commands 155

he
 to an

chy
y
ge 59

ther
0 for

d.

s been
at

f

he

istic
Method Commands
Description on page 156Specification on page 157Method Independent Controls on page 158DOT Methods on page 161NPSOL Method on page 162OPT++ Methods on page 165SGOPT Methods on page 168Nondeterministic Methods on page 175 Monte Carlo Probability Method on page 175Mean Value Method on page 176Parameter Study Methods on page 176 Vector Parameter Study on page 176List Parameter Study on page 178Centered Parameter Study on page 178Multidimensional Parameter Study on page 179

Description

The method section in a DAKOTA input file specifies the name and controls of an iterator. T
terms “method” and “iterator” can be used interchangeably, although method usually refers
input specification whereas iterator usually refers to an object within theDakotaIterator
hierarchy. A method specification, then, is used to select an iterator from the iterator hierar
(see Iterator and Strategy Hierarchies on page 52), which includes optimization, uncertaint
quantification, least squares, and parameter study iterators (see Capability Overview on pa
for more information on these iterator branches). This iterator may be used alone or with o
iterators as dictated by the strategy specification (refer to Strategy Commands on page 15
strategy command syntax and to Strategy Capabilities on page 70 for strategy algorithm
descriptions).

Several examples follow. The first example shows a specification for an optimization metho
method,\

dot_sqp\
 id_method = ‘NLP1’\
 variables_pointer = ‘V1’\
 interface_pointer = ‘I1’\
 responses_pointer = ‘R1’

This example demonstrates the use of identifiers and pointers. The method specification ha
tagged with the string‘NLP1’ . This string can be used in a strategy specification to identify th
this method will be invoked by the strategy. Similarly, variables, interface, and responses
specifications which have been tagged elsewhere with‘V1’ , ‘I1’ , and‘R1’ strings are being
identified as the specifications that this method will use in its iteration. Note that this type o
tagging and cross-referencing is not needed when relationships among specifications are
unambiguous (due to the presence of only one specification). The next example shows a
specification for a least squares method.

method,\
optpp_g_newton\
 convergence_tolerance = 1.e-8\
 max_iterations = 10\
 search_method, trust_region\
 gradient_tolerance = 1.e-6

This example demonstrates some method independent and method dependent controls. T
convergence_tolerance andmax_iterations settings are method independent
controls, in that they are defined for a variety of methods. Thesearch_method and
gradient_tolerance settings are method dependent controls, in that they are only
meaningful for OPT++ methods. The next example shows a specification for a nondetermin
iterator.

method,\
User’s Instructions Method Commands - Description 156

mple
ethod

nt

R

nal.
s. The
n

nond_probability\
 observations = 100\
 seed = 1\
 sample_type, lhs\
 response_thresholds = 1000., 500.

Each of the nondeterministic method controls are method dependent controls. The last exa
shows a specification for a parameter study iterator where, again, each of the controls are m
dependent.

method,\
parameter_study\
 step_vector = 1.,1.,1.\
 num_steps = 10

Specification

The method specification has the following structure:
method, \

<method independent controls>\
<method selection>\
<method dependent controls>

where<method selection> is one of the following:
dot_frcg, dot_mmfd, dot_bfgs, dot_slp, dot_sqp, npsol_sqp,
optpp_cg, optpp_q_newton, optpp_g_newton, optpp_newton,
optpp_fd_newton, optpp_baq_newton, optpp_ba_newton,
optpp_bcq_newton, optpp_bcg_newton, optpp_bc_newton,
optpp_bc_ellipsoid, optpp_pds, optpp_test_new,
sgopt_pga_real, sgopt_pga_int, sgopt_coord_ps,
sgopt_coord_sps, sgopt_solis_wets, sgopt_strat_mc,
nond_probability, nond_mean_value, vector_parameter_study,
list_parameter_study, centered_parameter_study,
multidim_parameter_study

The<method independent controls> are those controls which are valid for a variety
of methods. In some cases, these controls are abstractions which may have slightly differe
implementations from one method to the next. The<method dependent controls> are
those controls which are only meaningful for a specific method or library. Referring to the ID
Input Specification File on page 112, the<method independent controls> are those
controls defined externally from and prior to the method selection blocks. They are all optio
The method selection blocks are all required group specifications separated by logical OR’
<method dependent controls> are those controls defined within the method selectio
blocks. The following sections provide additional detail on the method independent controls
followed by the method selections and their corresponding method dependent controls.
User’s Instructions Method Commands - Specification 157

ntrol,
 and

fier

s will
ce. If

to the

hods
ps.

search
ating
a

es.
nt
n line

either
point
sign
rk
 a trial
t
rallel

8] for
Method Independent Controls

The method independent controls include a method identifier string, pointers to variables,
interface, and responses specifications, speculative gradient selection, output verbosity co
linear constraint specification, convergence tolerance specification, and maximum iteration
function evaluation limits. While each of these controls is not valid for every method, the
controls are valid for enough methods that it was reasonable to pull them out of the method
dependent blocks and consolidate the specifications.

The method identifier string is supplied withid_method and is used to provide a unique
identifier string for use with strategy specifications. It is appropriate to omit a method identi
string if only one method is included in the input file andsingle_method is the selected
strategy, since the binding of a strategy to a method is unambiguous in this case.

The interface_pointer , variables_pointer , andresponses_pointer
specifications in the method keyword provide strings for cross-referencing with the
id_interface , id_variables , andid_responses string inputs from the interface,
variables, and responses keyword specifications. These pointers identify which specification
be used by a particular method for its mapping of variables into responses through an interfa
a pointer string is specified and no corresponding id is available, an error message will be
printed. If no pointer string is specified, the last specification parsed will be used. It is
appropriate to omit this cross-referencing whenever the relationships are unambiguous due
presence of only one specification. Since the method specification is responsible for cross-
referencing with the interface, variables, and responses specifications, identification of met
at the strategy layer is often sufficient to completely specify all of the object interrelationshi

When performing gradient-based optimization in parallel,speculative gradients can be
selected to address the load imbalance that can occur between gradient evaluation and line
phases. In a typical synchronous analysis, the line search phase consists primarily of evalu
the objective function and any constraints at a trial point, and then testing the trial point for
sufficient decrease in the objective function value and/or constraint violation. If a sufficient
decrease is not observed, then one or more additional trial points may be attempted in seri
However, if the trial point is accepted then the line search phase is complete and the gradie
evaluation phase begins. By speculating that the gradient information associated with a give
search trial point will be used later, additional coarse grained parallelism can be introduced
during an asynchronous analysis. This is achieved by computing the gradient information,
by finite difference or analytically, in parallel, at the same time as the line search phase trial-
function values. This balances the total amount of computation to be performed at each de
point and allows for efficient utilization of multiple processors. While the total amount of wo
performed will generally increase (since some speculative gradients will not be used when
point is rejected in the line search phase), the run time will usually decrease (since gradien
evaluations needed at the start of each new optimization cycle were already performed in pa
during the line search phase). Refer to [Byrd, R.H., Schnabel, R.B., and Schultz, G.A., 198
additional details. Thespeculative specification is implemented for the gradient-based
User’s Instructions Method Commands - Method Independent Controls 158

e user
nt

ing

rtup,
ose

n of

gn
 with

e
y the

be
aries
s

optimizers in the DOT, NPSOL, and OPT++ libraries, and it can be used withdakota
numerical or analytic gradient selections in the responses specification (see Gradient
specification on page 146). It should not be selected withvendor numerical gradients since
vendor internal finite difference algorithms have not been modified for this purpose. In full-
Newton approaches, the Hessian is also computed speculatively.

Output verbosity control is specified withoutput followed by eitherverbose or quiet .
This control is mapped into each iterator to manage the volume of data that is returned to th
during the course of the iteration. Different iterators implement this control in slightly differe
ways, however the meaning is consistent.

Linear constraint coefficients can be supplied with thelinear_constraints list
specification. While many of DAKOTA’s optimizers will eventually support specialized handl
of linear constraints, currently only the NPSOL library supports this feature. For all other
optimizers, linear constraints should be included within the more general
num_nonlinear_constraints count and returned on every function evaluation. For
NPSOL, linear constraints need not be computed by the user’s interface on every function
evaluation; rather the coefficients of the linear constraints can be provided to NPSOL at sta
allowing NPSOL to track the linear constraints internally. Note that linear constraints are th
constraints that are linear in thedesign variables, e.g.:

3x 1 - 4x 2 ≤ 0.5
x1 + x 2 ≥ 2.0

which is not to be confused with something like
σ(X) - σfail ≤ 0

which is linear in a response quantity, but the response quantity is a nonlinear implicit functio
the design variables. For the linear constraints above, the specification would appear as:

linear_constraints = 3.0, -4.0, -0.5, -1.0, -1.0, 2.0

where the list in divided into individual constraints based on the number of continuous desi
variables and according to the following assumed form (which was selected for consistency
the nonlinear constraint assumed form of gi(X) ≤ 0):

a1x1 + a 2x2 + ... + a nxn + a 0 ≤ 0

Theconvergence_tolerance specification provides a real value for controlling the
termination of iteration. In most cases, it is a relative convergence tolerance for the objectiv
function; i.e., if the change in the objective function between successive iterations divided b
previous objective function is less than the amount specified byconvergence_tolerance ,
then this convergence criterion is satisfied on the current iteration. Since no progress may
made on one iteration followed by significant progress on a subsequent iteration, some libr
require that theconvergence_tolerance be satisfied on two or more consecutive iteration
prior to termination of iteration. This control is most meaningful for optimization and least
squares iterators and is not currently implemented within the uncertainty quantification and
parameter study iterator branches. Refer to the DOT, NPSOL, OPT++, and SGOPT
specifications for the specific interpretation ofconvergence_tolerance for these libraries.
User’s Instructions Method Commands - Method Independent Controls 159

rol
if the
ted.

 an

ation

thod
Theconstraint_tolerance specification determines the maximum allowable value of
infeasibility that any constraint in an optimization problem may possess at termination. It is
specified as a positive real value. If a constraint function is greater than this value then it is
considered to be violated by the optimization algorithm. This specification gives some cont
over how tightly the constraints may be satisfied at convergence of the algorithm. However,
value is set too small the algorithm may terminate with one or more constraints being viola
This specification is currently meaningful for the NPSOL and DOT constrained optimizers.

Themax_iterations andmax_function_evaluations controls provide integer limits
for the maximum number of iterations and maximum number of function evaluations,
respectively. The difference between an iteration and a function evaluation is that a function
evaluation involves a single parameter to response mapping through an interface, whereas
iteration involves a complete cycle of computation within the iterator. Thus, an iteration
generally involves multiple function evaluations (e.g., for descent direction and line search
computations in gradient-based optimization, population and multiple offset evaluations in
nongradient-based optimization, etc.). This control is not currently implemented within the
uncertainty quantification and parameter study iterator branches, and in the case of optimiz
and least squares, does not currently capture function evaluations that occur as part of the
method_source dakota finite difference routine (since these additional evaluations are
intentionally isolated from the iterators). Table 34 provides the specification detail for the me
independent controls.

Table 34 Specification detail for the method independent controls

Description Specification Sample Status Default

Method set
identifier

[id_method =
<STRING>]

id_method = ‘NLP1’ Optional strategy usage of
last method
parsed

Interface
pointer

[interface_pointer =
<STRING>]

interface_pointer =
‘I1’

Optional method usage of
last interface
parsed

Variables
pointer

[variables_pointer =
<STRING>]

variables_pointer =
‘V1’

Optional method usage of
last variables
parsed

Responses
pointer

[responses_pointer =
<STRING>]

responses_pointer =
‘R1’

Optional method usage of
last responses
parsed

Speculative
gradients and
Hessians

[speculative] speculative Optional standard
gradients and
Hessians

Output
verbosity

[{output} {verbose} |
{quiet}]

output verbose Optional
group

quiet

Linear
constraints

[linear_constraints =
<LISTof> <REAL>]

linear_constraints =
1.0, 2.0, 3.0

Optional no linear
constraints
User’s Instructions Method Commands - Method Independent Controls 160

/

 for

e

ach

er, if
Developer’s notes: defaults for method independent and method dependent controls are defined in Dakota/src
DataMethod.C.

DOT Methods

The DOT library [Vanderplaats Research and Development, 1995] contains nonlinear
programming optimizers, specifically the Broyden-Fletcher-Goldfarb-Shanno (Dakota’s
dot_bfgs method) and Fletcher-Reeves conjugate gradient (Dakota’sdot_frcg method)
methods for unconstrained optimization, and the modified method of feasible directions
(Dakota’sdot_mmfd method), sequential linear programming (Dakota’sdot_slp method),
and sequential quadratic programming (Dakota’sdot_sqp method) methods for constrained
optimization. DAKOTA implements the DOT library within theDOTOptimizer class.

Method independent controls

The method independent controls formax_iterations and
max_function_evaluations limit the number of major iterations and the number of
function evaluations that can be performed during a DOT optimization. The
convergence_tolerance control defines the threshold value on relative change in the
objective function that indicates convergence. This convergence criterion must be satisfied
two consecutive iterations before DOT will terminate. Theconstraint_tolerance
specification defines how tightly constraint functions are to be satisfied at convergence. Th
default value for DOT constrained optimizers is0.003 . Extremely small values for
constraint_tolerance may not be attainable. Theoutput verbosity specification
controls the amount of information generated by DOT: thequiet setting results in header
information, final results, and objective function, constraint, and parameter information on e
iteration; whereas theverbose setting adds additional information on gradients, search
direction, one-dimensional search results, and parameter scaling factors. DOT contains no
parallel algorithms which can directly take advantage of asynchronous evaluations. Howev

Constraint
tolerance

[constraint_
tolerance = <REAL>

constraint_
tolerance = 1.e-4

Optional Optimization
code dependent

Convergence
tolerance

[convergence_
tolerance = <REAL>]

convergence_
tolerance = 1.e-5

Optional 1.e-4

Maximum
iterations

[max_iterations =
<INTEGER>]

max_iterations = 10 Optional 100

Maximum
function
evaluations

[max_function_
evaluations =
<INTEGER>]

max_function_
evaluations =200

Optional 1000

Table 34 Specification detail for the method independent controls

Description Specification Sample Status Default
User’s Instructions Method Commands - DOT Methods 161

 the

ntrols

ther

.

s a
numerical_gradients with method_source dakota is specified, then an
asynchronous interface specification will trigger the use of asynchronous evaluations for
finite difference function evaluations. In addition, ifspeculative is specified, then gradients
(dakota numerical or analytic gradients) will be computed on each line search
evaluation in order to balance the load and lower the total run time in parallel optimization
studies. Lastly, specialized handling oflinear_constraints is not supported with DOT;
linear constraints should be included within thenum_nonlinear_constraints count and
returned on every function evaluation. Specification detail for these method independent co
is provided in Table 34.
Developer’s notes:max_iterations , max_function_evaluations , convergence_tolerance , and
output verbosity are implemented withinDOTOptimizer as follows:max_iterations is mapped into DOT’s
ITMAX parameter within itsIPRM array;max_function_evaluations is implemented directly in the
DOTOptimizer::find_optimum loop since there is no DOT parameter equivalent;convergence_tolerance is
mapped into DOT’sDELOBJ parameter (the relative convergence tolerance) within itsRPRM array; andoutput
verbosity is mapped into DOT’sIPRINT parameter within its function call parameter list (verbose:IPRINT = 7;
quiet:IPRINT = 3). Refer to [Vanderplaats Research and Development, 1995] for information onIPRM, RPRM, and
the DOT function call parameter list.

Method dependent controls

DOT’s only method dependent control isoptimization_type which may be either
minimize or maximize . DOT has the only methods within DAKOTA which provide this
control; to convert a maximization problem into the minimization formulation assumed by o
methods, simply change the sign on the objective function (i.e., multiply by -1). Table 35
provides the specification detail for the DOT methods and their method dependent controls

Developer’s notes:optimization_type is mapped into DOT’sMINMAX parameter within its function call
parameter list.

NPSOL Method

The NPSOL library [Gill, P.E., Murray, W., Saunders, M.A., and Wright, M.H., 1986] contain
sequential quadratic programming (SQP) implementation (thenpsol_sqp method). SQP is a

Table 35 Specification detail for the DOT methods

Description Specification Sample Status Default

DOT method ({dot_bfgs} ...) | (
{dot_frcg} ...) | (
{dot_mmfd} ...) | (
{dot_slp} ...) | (
{dot_sqp} ...)

dot_sqp Required
group

N/A

Optimization type [{optimization_type}
{minimize} |
{maximize}]

optimization_type,
minimize

Optional
group

minimize
User’s Instructions Method Commands - NPSOL Method 162

of

m.

ch

 the
d. For

et
upplied

ll
 line

 is

lect
nonlinear programming optimizer for constrained minimization. DAKOTA implements the
NPSOL library within theNPSOLOptimizer class.

Method independent controls

The method independent controls formax_iterations and
max_function_evaluations limit the number of major SQP iterations and the number
function evaluations that can be performed during an NPSOL optimization. The
convergence_tolerance control defines NPSOL’s internal optimality tolerance which is
used in evaluating if an iterate satisfies the first-order Kuhn-Tucker conditions for a minimu
The magnitude ofconvergence_tolerance approximately specifies the number of
significant digits of accuracy desired in the final objective function (e.g.,
convergence_tolerance = 1.e-6 will result in approximately six digits of accuracy in
the final objective function). Theconstraint_tolerance control defines how tightly the
constraint functions are satisfied at convergence. The default value is dependent upon the
machine precision of the platform in use, but is typically on the order of1.e-8 for double
precision computations. Extremely small values forconstraint_tolerance may not be
attainable. Theoutput verbosity setting controls the amount of information generated at ea
major SQP iteration: thequiet setting results in only one line of diagnostic output for each
major iteration and prints the final optimization solution, whereas theverbose setting adds
additional information on the objective function, constraints, and variables at each major
iteration.

NPSOL is not a parallel algorithm and cannot directly take advantage of asynchronous
evaluations. However, ifnumerical_gradients with method_source dakota is
specified, anasynchronous interface specification will trigger the use of asynchronous
evaluations for the finite difference function evaluations. An important related observation is
fact that NPSOL uses two different line searches depending on how gradients are compute
eitheranalytic_gradients or numerical_gradients with method_source
dakota , NPSOL is placed in user-supplied gradient mode (NPSOL’s “Derivative Level” is s
to 3) and it uses a gradient-based line search (presumably since it assumes that the user-s
gradients are inexpensive). On the other hand, ifnumerical_gradients are selected with
method_source vendor , then NPSOL is computing finite differences internally and it wi
use a value-based line search (presumably since it assumes that finite differencing on each
search evaluation is too expensive). The ramifications of this are: (1) performance will vary
betweenmethod_source dakota andmethod_source vendor for
numerical_gradients , and (2) gradient speculation is unnecessary when performing
optimization in parallel since the gradient-based line search in user-supplied gradient mode
already load balanced for multiple processor execution. Therefore, aspeculative
specification will be ignored by NPSOL, and optimization with numerical gradients should se
method_source dakota for load balanced parallel operation andmethod_source
vendor for efficient serial operation.
User’s Instructions Method Commands - NPSOL Method 163

ly,
tion
nd to

s

OL

,

Lastly, NPSOL supports specialized handling of linear constraints with the
linear_constraints list specification. By specifying the coefficients of the linear
constraints, this information can be provided to NPSOL at initialization and tracked internal
removing the need for the user to provide the values of the linear constraints on every func
evaluation. Refer to Method Independent Controls on page 158 for additional information a
Table 34 for method independent control specification detail.
Developer’s notes:max_iterations , max_function_evaluations , convergence_tolerance , and
output verbosity are implemented withinNPSOLOptimizer as follows:max_iterations is mapped into
NPSOL’s“Major Iteration Limit” parameter using itsNPOPTN routine;
max_function_evaluations is implemented directly inNPSOLOptimizer’s evaluator functions since there
is no NPSOL parameter equivalent;convergence_tolerance is mapped into NPSOL’s“Optimality
Tolerance” parameter using the NPOPTN routine;output verbosity is mapped into NPSOL’s“Major Print
Level” parameter using the NPOPTN routine (verbose : Major Print Level = 20;quiet : Major Print
Level = 10). Refer to [Gill, P.E., Murray, W., Saunders, M.A., and Wright, M.H., 1986] for information on
NPSOL’s optional input parameters and the NPOPTN subroutine.

Method dependent controls

NPSOL’s method dependent controls areverify_level , function_precision , and
linesearch_tolerance . Theverify_level control instructs NPSOL to perform finite
difference verifications on user-supplied gradient components. Thefunction_precision
control provides NPSOL an estimate of the accuracy to which the problem functions can be
computed. This is used to prevent NPSOL from trying to distinguish between function value
that differ by less than the inherent error in the calculation. And the
linesearch_tolerance setting controls the accuracy of the line search. The smaller the
value (between 0 and 1), the more accurately NPSOL will attempt to compute a precise
minimum along the search direction. Table 36 provides the specification detail for the NPS
SQP method and its method dependent controls.

Developer’s notes:verify_level , function_precision , andlinesearch_tolerance are mapped
into NPSOL’s“Verify Level” , “Function Precision” and“Linesearch Tolerance” parameters,
respectively, using NPSOL’sNPOPTN routine. Refer to [Gill, P.E., Murray, W., Saunders, M.A., and Wright, M.H.
1986] for additional information on these controls.

Table 36 Specification detail for the NPSOL SQP method

Description Specification Sample Status Default

NPSOL’s SQP
method

({npsol_sqp} ...) npsol_sqp Required
group

N/A

Verify level [verify_level =
<INTEGER>]

verify_level = -1 Optional -1 (no gradient
verification)

Function
precision

[function_precision =
<REAL>]

function_precision
= 1.e-6

Optional 1.e-10

Line search
tolerance

[linesearch_tolerance =
<REAL>]

linesearch_toleran
ce = 0.4

Optional 0.9 (inaccurate line
search)
User’s Instructions Method Commands - NPSOL Method 164

 for

TA’s

t-
nous

S
n

nt
to the

nt
OPT++ Methods

The OPT++ library [Meza, J.C., 1994] contains primarily nonlinear programming optimizers
unconstrained minimization: Polak-Ribiere conjugate gradient (DAKOTA’soptpp_cg method),
quasi-Newton, barrier function quasi-Newton, and bound constrained quasi-Newton (DAKO
optpp_q_newton , optpp_baq_newton , andoptpp_bcq_newton methods), Gauss-
Newton and bound constrained Gauss-Newton (DAKOTA’soptpp_g_newton and
optpp_bcg_newton methods - part of DAKOTA’s nonlinear least squares branch), full
Newton, barrier function full Newton, and bound constrained full Newton (DAKOTA’s
optpp_newton , optpp_ba_newton , andoptpp_bc_newton methods), finite difference
Newton (DAKOTA’soptpp_fd_newton method), and bound constrained ellipsoid
(DAKOTA’s optpp_bc_ellipsoid method). The library also contains a directed search
algorithm, PDS (parallel direct search, DAKOTA’soptpp_pds method), and an input place
holder for new algorithm testing (DAKOTA’soptpp_test_new method). DAKOTA
implements the OPT++ library within theSNLLOptimizer class, where “SNLL” denotes Sandia
National Laboratories - Livermore.

Method independent controls

The method independent controls formax_iterations and
max_function_evaluations limit the number of major iterations and the number of
function evaluations that can be performed during an OPT++ optimization. The
convergence_tolerance control defines the threshold value on relative change in the
objective function that indicates convergence. Theoutput verbosity specification controls the
amount of information generated by OPT++: thequiet setting corresponds to turning OPT++’s
internal debug mode off, whereas theverbose setting turns debug mode on. OPT++’s gradien
based methods are not parallel algorithms and cannot directly take advantage of asynchro
evaluations. However, ifnumerical_gradients with method_source dakota is
specified, anasynchronous interface specification will trigger the use of asynchronous
evaluations for the finite difference gradient computations. OPT++’s nongradient-based PD
method can directly exploit asynchronous evaluations; however, this capability has not bee
implemented within DAKOTA V1.1.

Thespeculative specification enables speculative computation of Hessian and/or gradie
information, where applicable, for load balancing purposes. The specification is applicable
computation of gradient information in cases wheretrust_region or
value_based_line_search methods can be applied. See the OPT++ Method depende
controls on page 162 for a description ofvalue_based_line_search and
trust_region methods. Thespeculative specification must be used in conjunction with
dakota numerical or analytic gradients. The specification is ignored and a warning
message is printed for gradient computations when agradient_based_line_search is
used, or when theoptpp_ba_newton , optpp_baq_newton or optpp_bc_ellipsoid
User’s Instructions Method Commands - OPT++ Methods 165

thods,

ation

ry for

ective

d
.

ect

oid

ds is

e
of

il for
jugate

ation
methods are used. The speculative specification can also be applied to the full Newton me
which require computation ofanalytic hessians, or for theoptpp_fd_newton
method. However, the specification is ignored for theoptpp_g_newton Hessian
computation, which approximates the Hessian from function and gradient values.

Lastly, specialized handling oflinear_constraints is not supported with OPT++; many
OPT++ methods must be unconstrained and some can handle bound constraints. Specific
detail for these method independent controls is provided in Table 34.
Developer’s notes:within theSNLLOptimizer class,max_iterations , max_function_evaluations , and
convergence_tolerance are set using OPT++’sSetMaxIter , SetMaxFeval , andSetFcnTol member
functions, respectively;output verbosity is used to toggle OPT++’s debug mode using theSetDebug member
function. Refer to [Meza, J.C., 1994] and to the OPT++ source in the Dakota/VendorOptimizers/opt++ directo
information on OPT++ class member functions.

Method dependent controls

OPT++’s method dependent controls aremax_step , gradient_tolerance ,
search_method , initial_radius , andsearch_scheme_size . Themax_step
control specifies the maximum step that can be taken when computing a change in the obj
function iterate (e.g., limiting the Newton step computed from current gradient and Hessian
information). It is equivalent to a move limit or a maximum trust region size. The
gradient_tolerance control defines the threshold value on the L2 norm of the objective
function gradient that indicates convergence to an unconstrained minimum (no active boun
constraints). Thegradient_tolerance control is defined for all gradient-based optimizers

Thesearch_method control is defined for all Newton-based optimizers and is used to sel
betweentrust_region, gradient_based_line_search, and
value_based_line_search methods. Themax_step control is applicable wherever one
of the abovesearch_method techniques is used. Thetrust_region search method is the
default for all methods except ellipsoid, barrier, and bound-constrained methods. The ellips
and barrier methods use built-in directional searches, and thus, the overallsearch_method
control does not apply. The use of trust region techniques for the bound-constrained metho
an open research issue, and currently theline_search method is the default. The
initial_radius control is defined for the ellipsoid method to specify the initial radius of th
ellipsoid, andsearch_scheme_size is defined for the PDS method to specify the number
points tospeculative gradient specification be used in the direct search template.

Table 37, Table 38, Table 39, Table 40, Table 41, and Table 42 provide the specification deta
the OPT++ methods and their method dependent controls. Table 37 covers the OPT++ con
gradient method specification. Table 38 provides the detail for all of the unconstrained and
bound-constrained Newton-based methods. Table 39 provides the detail for barrier Newton
methods. Table 40 provides the detail for the bound constrained ellipsoid method. Table 41
provides the detail for the parallel direct search method. And Table 42 provides the specific
detail for OPT++ new method testing.
User’s Instructions Method Commands - OPT++ Methods 166

Table 37 Specification detail for the OPT++ conjugate gradient method

Description Specification Sample Status Default

OPT++’s
conjugate
gradient method

({optpp_cg} ...) optpp_cg Required
group

N/A

Maximum step
size

[max_step = <REAL>] max_step = 1000. Optional 1000.

Gradient
tolerance

[gradient_tolerance =
<REAL>]

gradient_tolerance =
0.0001

Optional 0.0001

Table 38 Specification detail for unconstrained and bound-constrained
Newton-based OPT++ methods

Description Specification Sample Status Default

OPT++ Newton-
based methods

({optpp_q_newton} ...) |
({optpp_g_newton} ...) |
({optpp_newton} ...) |
({optpp_fd_newton} ...) |
({optpp_bc_newton} ...) | (
{optpp_bcq_newton} ...) | (
{optpp_bcg_newton} ...)

optpp_q_ne
wton

Required
group

N/A

Search method [{search_method}
{value_based_line_search}|
{gradient_based_line_searh}|
{trust_region}]

search_meth
od,
value_based
_line_search

Optional
group

line_search
for bc
methods,
trust_region
for others

Maximum step
size

[max_step = <REAL>] max_step =
1000.0

Optional 1000.

Gradient
tolerance

[gradient_tolerance = <REAL>] gradient_tole
rance =
0.0001

Optional 0.0001

Table 39 Specification detail for barrier-constrained Newton OPT++
methods

Description Specification Sample Status Default

OPT++ barrier
Newton methods

({optpp_ba_newton} ...) | (
{optpp_baq_newton} ...)

optpp_ba_ne
wton

Required
group

N/A

Gradient
tolerance

[gradient_tolerance = <REAL>] gradient_tole
rance =
0.0001

Optional 0.0001
User’s Instructions Method Commands - OPT++ Methods 167

e
tions.

of

e part

cal
Developer’s notes: max_step , gradient_tolerance , search_method , initial_radius , and
search_scheme_size are set using OPT++’sSetMaxStep , SetGradTol , SetSearchStrategy ,
SetInitialEllipsoid , andSetSSS member functions, respectively. Refer to [Meza, J.C., 1994] and to th
OPT++ source in the Dakota/VendorOptimizers/opt++ directory for information on OPT++ class member func

SGOPT Methods

The SGOPT (Stochastic Global OPTimization) library [Hart, W.E., 1997] contains a variety
global optimization algorithms, with an emphasis on stochastic methods. SGOPT currently
includes the following global optimization methods: genetic algorithms (sgopt_pga_real ,
sgopt_pga_int) and stratified Monte Carlo (sgopt_strat_mc). Evolutionary pattern
search algorithms, simulated annealing, tabu search, and multistart local search (to becom
of DAKOTA’s coupled multi_level strategy) are global methods which are under
development but are not available in DAKOTA V1.0. Additionally, SGOPT includes several lo

Table 40 Specification detail for the OPT++ bound constrained ellipsoid
method

Description Specification Sample Status Default

OPT++’s bound
constrained
ellipsoid

({optpp_bc_ellipsoid} ...) optpp_bc_ellipsoid Required
group

N/A

Initial radius [initial_radius = <REAL>] initial_radius =
1000.0

Optional 1000.

Maximum step
size

[max_step = <REAL>] max_step = 1000. Optional 1000.

Gradient
tolerance

[gradient_tolerance = <REAL>] gradient_tolerance
= 0.0001

Optional 0.0001

Table 41 Specification detail for the OPT++ PDS method

Description Specification Sample Status Default

OPT++’s Parallel
Direct Search

({optpp_pds} ...) optpp_pds Required
group

N/A

Search scheme
size

[search_scheme_size =
<INTEGER>]

search_scheme_size
= 32

Optional 32

Table 42 Specification detail for OPT++ new method testing

Description Specification Sample Status Default

Placeholder for new
OPT++ method testing

{optpp_test_new} optpp_test_new Required N/A
User’s Instructions Method Commands - SGOPT Methods 168

e

rved,

tions

ing

ined
 Table

 (on).
h can be

),
search algorithms such as Solis-Wets (sgopt_solis_wets) and deterministic and stochastic
coordinate pattern search (sgopt_coord_ps andsgopt_coord_sps). DAKOTA
implements the SGOPT library within theSGOPTOptimizer class.
Developer’s notes:To specify method controls and options, DAKOTA’sSGOPTOptimizer class instantiates SGOPT
method interface objects (e.g.,IPGAreal is an interface class to thePGAreal optimizer class). The purpose of thes
interface classes is to simplify the communication of information from driver programs (e.g., DAKOTA) to the
SGOPT optimizer classes. This information transfer occurs through the passing of string data using theprocess
member function available in the interface classes. For example, the command

baseOptimizerInterface->process(“debug”, “5”);
uses a pointer to an optimizer interface object (baseOptimizerInterface) to set thedebug data structure
within the interface object’s corresponding optimizer class to the integer 5.

Method independent controls

The method independent controls formax_iterations and
max_function_evaluations limit the number of major iterations and the number of
function evaluations that can be performed during an SGOPT optimization. The
convergence_tolerance control defines the threshold value on relative change in the
objective function that indicates convergence. Theoutput verbosity specification controls the
amount of information generated by SGOPT: thequiet setting corresponds to a low level of
diagnostics reported only on those iterations for which improvement in the objective is obse
whereas theverbose setting corresponds to a higher level of diagnostics reported on every
iteration. Many of SGOPT’s nongradient-based methods have independent function evalua
that can directly take advantage of DAKOTA’s parallel capabilities. The following methods
currently support concurrent function evaluations:sgopt_pga_real , sgopt_pga_int ,
sgopt_strat_mc , sgopt_coord_ps , andsgopt_coord_sps . This methods
automatically utilize asynchronous logic when utilizing multiple processors of when specify
anasynchronous interface. Note that parallel usage ofsgopt_coord_ps or
sgopt_coord_sps overrides any setting forexploratory_moves (see Coordinate pattern
search (CPS) on page 172), since thestandard , offset , best_first , and
biased_best_first settings only involve relevant distinctions for the case of serial
operation. Lastly, neitherspeculative gradients nor specialized handling of
linear_constraints are supported with SGOPT since SGOPT methods are unconstra
and nongradient-based. Specification detail for method independent controls is provided in
34.
Developer’s notes:max_iterations , max_function_evaluations , convergence_tolerance , and
output verbosity are implemented withinSGOPTOptimizer as follows:max_iterations is mapped into
SGOPT’smax_iters data attribute using theprocess command available in SGOPT’s interface classes;
max_function_evaluations is mapped intomax_neval usingprocess; convergence_tolerance is
mapped intoftol usingprocess; output verbosity is mapped intodebug anddynamic_debug settings using
process(verbose : thedebug level is set to 5 and thedynamic_debug flag is not set;quiet : thedebug level
is set to 0 and thedynamic_debug flag is turned on). Thedynamic_debug flag determines whether results are
reported on every iteration (off) or only on those iterations for which improvement in the objective is observed
SGOPT methods assume asynchronous operations whenever the algorithm has independent evaluations whic
performed simultaneously (implicit parallelism). Therefore, theevaluations asynchronous control is not
mapped into the method (exception:emcase is set to 3 usingprocessfor asynchronous coordinate pattern searches
User’s Instructions Method Commands - SGOPT Methods 169

s
ation

h the
cy.
se

able

 to its

ern
),
nents,
ings
ction,
gs

,
e

rather it is used inSGOPTRealApplication andSGOPTIntApplication to control whether or not an asynchronou
evaluation request from the method is honored by the model. Refer to [Hart, W.E., 1997] for additional inform
on SGOPT objects and controls.

Method dependent controls

solution_accuracy andmax_cpu_time are method dependent controls which are
defined for all SGOPT methods. Solution accuracy defines a convergence criterion in whic
optimizer will terminate if it finds an objective function value lower than the specified accura
Note that the default of 1.e-5 should be overridden in those applications where it could cau
premature termination. The maximum CPU time setting is another convergence criterion in
which the optimizer will terminate if its CPU usage in seconds exceeds the specified limit. T
43 provides the specification detail for these method dependent controls.

Developer’s notes:solution_accuracy andmax_cpu_time are passed into SGOPT’s optimizers using
process with identifiers ofacc andtime , respectively.

Each SGOPT method supplements the settings of Table 43 with controls which are specific
particular class of method. Genetic algorithms have additional settings for random seed,
population size, selection pressure, replacement, crossover, and mutation. Coordinate patt
search algorithms have additional settings for random seed (stochastic pattern search only
expansion policy, number of successes before expansion, expansion and contraction expo
initial and threshold deltas, and exploratory moves selection. Solis-Wets has additional sett
for random seed, number of successes before expansion, number of failures before contra
and initial and threshold rho settings. And lastly, stratified Monte Carlo has additional settin
for random seed and parameter space partitioning.

Genetic algorithms (GAs)

DAKOTA currently implements two types of GAs: a real-valued GA (sgopt_pga_real) and
an integer-valued GA (sgopt_pga_int). Most controls for these two methods are the same
although their crossover and mutation controls have slight differences. Table 44 provides th
specification detail for the controls which are common between the two GAs.

Table 43 Specification detail for SGOPT method dependent controls

Description Specification Sample Status Default

Solution
Accuracy

[solution_accuracy =
<REAL>]

solution_accuracy = 0.0 Optional 1.e-5

Maximum CPU
Time

[max_cpu_time = <REAL>] max_cpu_time = 86400.0 Optional No limit
User’s Instructions Method Commands - SGOPT Methods 170

ve
tical
ill
The randomseed control provides a mechanism for making a stochastic optimization
repeatable. For example, even though many of the processes within a genetic algorithm ha
random character, the use of the same random seed in identical studies will generate iden
results. This, of course, implies that generating meaningful statistics on GA performance w
require the user to vary the random seed on multiple runs. Thepopulation_size control
specifies how many individuals will comprise the GA’s population. The
selection_pressure controls how strongly differences in fitness are weighted in the
process of selecting “parents” for crossover. Thereplacement_type controls how current
populations and newly generated individuals are combined into a new population.

Table 45 and Table 46 show the crossover and mutation controls which differ between
sgopt_pga_real andsgopt_pga_int .

Table 44 Specification detail for the SGOPT GA methods

Description Specification Sample Status Default

GA methods ({sgopt_pga_real} ...) | (
{sgopt_pga_int} ...)

sgopt_pga_real Required
group

N/A

Random seed [seed = <INTEGER>] seed = 1 Optional 1

population size [population_size =
<INTEGER>]

population_size = 10 Optional 100

selection
pressure

[{selection_pressure} {rank =
<REAL>} | {proportional}]

selection_pressure,
rank = 2.0

Optional
group

proportion
al

replacement type [{replacement_type} {random}
| {CHC} | {elitist}
[new_solutions_generated =
<INTEGER>]]

replacement_type
elitist,
new_solutions_generat
ed = 5

Optional
group

???

Table 45 Specification detail for SGOPT real GA crossover and mutation

Description Specification Sample Status Default

crossover type [{crossover_type}
{two_point} | {mid_point} |
{blend} | {uniform}
[crossover_rate = <REAL>]]

crossover_type
mid_point,
crossover_rate = 0.6

Optional
group

two_point
crossover
with rate =
0.8

mutation type [{mutation_type} (
{normal} [std_deviation =
<REAL>]) | {interval} |
{cauchy} [dimension_rate =
<REAL>] [population_rate =
<REAL>]]

mutation_type
normal,
dimension_rate = 0.8

Optional
group

???
User’s Instructions Method Commands - SGOPT Methods 171

es not.
ndent
Thecrossover_type controls what approach is employed for combining parent genetic
information to create offspring, and thecrossover_rate specifies the probability of a
crossover operation being performed to generate a new offspring. Themutation_type
controls what approach is employed in randomly modifying design variables within the GA
population. The associatedpopulation_rate controls the probability of mutation being
performed on a particular individual, and if it is to be performed on an individual, the
dimension_rate is used to govern the probability of mutation per design variable for the
individual.

Coordinate pattern search (CPS)

DAKOTA implements two types of CPS: a deterministic CPS (sgopt_coord_ps) and a
stochastic CPS (sgopt_coord_sps). Their controls are identical except that the stochastic
CPS specification contains a random seed whereas the deterministic CPS specification do
Table 47 provides the specification detail for SGOPT CPS methods and their method depe
controls.

Table 46 Specification detail for SGOPT integer GA crossover and
mutation

Description Specification Sample Status Default

crossover type [{crossover_type}
{two_point} | {uniform}
[crossover_rate =
<REAL>]]

crossover_type
uniform,
crossover_rate = 0.6

Optional
group

two_point
crossover
with rate =
0.8

mutation type [{mutation_type} {offset}
| {interval}
[dimension_rate =
<REAL>] [population_rate
= <REAL>]]

mutation_type offset,
dimension_rate = 0.8

Optional
group

???

Table 47 Specification detail for the SGOPT CPS methods

Description Specification Sample Status Default

CPS methods ({sgopt_coord_ps} ...) | (
{sgopt_coord_sps} ...)

sgopt_coord_ps Required
group

N/A

Random seed
(stochastic only)

[seed = <INTEGER>] seed = 1 Optional 1

expansion policy [{expansion_policy} {unlimited}
| {once}]

expansion_policy
once

Optional
group

unlimited

expand after
success

[expand_after_success =
<INTEGER>]

expand_after_suc
cess = 2

Optional 1

expansion
exponent

[expansion_exponent =
<INTEGER>]

expansion_expon
ent = 1

Optional 0
User’s Instructions Method Commands - SGOPT Methods 172

e.

cal

t

oints

rallel
As described previously, the randomseed is used to make stochastic optimizations repeatabl
Theexpansion_policy setting specifies how many times an increase in delta can occur
(eitheronce or unlimited times). Theexpand_after_success control specifies how
many successful objective function improvements must occur with a specific delta prior to
expansion of the delta. Theexpansion_exponent andcontraction_exponent specify
the exponents used to evaluate the expansion and contraction factors, respectively. The
initial_delta andthreshold_delta specify the starting delta value and the minimum
value of delta that will be used prior to terminating, respectively. Lastly, the
exploratory_moves setting controls how:

• the evaluations about a current point are ordered. Theoffset case examines each of the2n
offsets in order whereas thestandard , best_first , andbiased_best_first
examine each of then dimensions in order. The offset and dimension orderings are identi
in the deterministic case; the distinction is only relevant for stochastic CPS in which the
orderings are shuffled either by offset or dimension (the order of then dimensions is shuffled
in thebest_first andbiased_best_first cases, and the order of the2n evaluations
is shuffled in theoffset case).

• whether or not the algorithm immediately selects the first improving point found (offset ,
best_first , andbiased_best_first) or waits and selects the best improving poin
found from all new design points (standard as well as the parallel case).

• whether the algorithm uses a bias to guide the algorithm in a direction where improving p
have previously been found (biased_best_first).

It is important to emphasize that the same sets of evaluation points are used by the
sgopt_coord_ps andsgopt_coord_sps methods; it is only theordering of the
evaluations that can differ due to the shuffling in the stochastic case. Consequently, in the pa
case where the ordering of the evaluations is unimportant (since they are being performed
simultaneously),sgopt_coord_ps andsgopt_coord_sps are essentially identical.

contraction
exponent

[contraction_exponent =
<INTEGER>]

contraction_expo
nent = 1

Optional -1

initial delta {initial_delta = <REAL>} initial_delta = 1.0 Required N/A

threshold delta {threshold_delta = <REAL>} threshold_delta =
1.e-6

Required N/A

exploratory
moves

[{exploratory_moves} {standard}
| {offset} | {best_first} |
{biased_best_first}]

exploratory_move
s best_first

Optional
group

standard

Table 47 Specification detail for the SGOPT CPS methods

Description Specification Sample Status Default
User’s Instructions Method Commands - SGOPT Methods 173

des

ent

gn
Solis-Wets

DAKOTA’s implementation of SGOPT also contains the Solis-Wets algorithm. Table 48 provi
the specification detail for this method and its method dependent controls.

As for other SGOPT methods, the randomseed is used to make stochastic optimizations
repeatable. Similar to CPS,expand_after_success specifies how many successful cycles
must occur with a specificρ prior to expansion ofρ. Andcontract_after_failure
specifies how many unsuccessful cycles must occur with a specificρ prior to contraction ofρ.
The initial_rho andthreshold_rho settings specify the startingρ value and the
minimum value ofρ that will be used prior to terminating, respectively.

Stratified Monte Carlo

Lastly, DAKOTA’s implementation of SGOPT contains a stratified Monte Carlo (sMC)
algorithm. Table 49 provides the specification detail for this method and its method depend
controls.

As for other SGOPT methods, the randomseed is used to make stochastic optimizations
repeatable. And thepartitions list is used to specify the number of partitions in each desi

Table 48 Specification detail for the SGOPT Solis-Wets method

Description Specification Sample Status Default

Solis-Wets
method

({sgopt_solis_wets} ...) sgopt_solis_wets Required
group

N/A

Random seed [seed = <INTEGER>] seed = 1 Optional 1

expand after
success

[expand_after_success =
<INTEGER>]

expand_after_succ
ess = 2

Optional 5

contract after
failure

[contract_after_failure =
<INTEGER>]

contract_after_failu
re = 2

Optional 3

initial ρ [initial_rho = <REAL>] initial_rho = 1.0 Optional 0.5

thresholdρ [threshold_rho = <REAL>] threshold_rho =
1.e-6

Optional 0.00001

Table 49 Specification detail for the SGOPT sMC method

Description Specification Sample Status Default

sMC method ({sgopt_strat_mc} ...) sgopt_strat_mc Required
group

N/A

Random seed [seed = <INTEGER>] seed = 1 Optional 1

partitions [partitions = <LISTof>
<INTEGER>]

partitions = 2, 4,
3

Optional No partitioning
User’s Instructions Method Commands - SGOPT Methods 174

ble.

t

s

onse

rator
ected

.

variable. For example,partitions = 2, 4, 3 specifies 2 partitions in the first design
variable, 4 partitions in the second design variable, and 3 partitions in the third design varia

Nondeterministic Methods

DAKOTA’s nondeterministic branch does not currently make use of the method independen
controls formax_iterations , max_function_evaluations ,
convergence_tolerance , speculative gradients,output verbosity, or
linear_constraints . As such, the nondeterministic branch documentation which follow
is limited to the method dependent controls for the Monte Carlo probability and mean value
methods.

Monte Carlo Probability Method

The Monte Carlo probability iterator is selected using thenond_probability specification.
This iterator performs sampling for different parameter values within a specified parameter
distribution in order to assess the distributions for response functions. Probability of event
occurrence (e.g., failure) is then assessed by comparing the response results against resp
thresholds. DAKOTA currently implements Monte Carlo methods within theNonDProbability
class.

The number of samples to be evaluated is selected with theobservations integer
specification. Theseed integer specification specifies the seed for the random number gene
which is used to make Monte Carlo studies repeatable. The parameter samples can be sel
with pure Monte Carlo (by specifyingsample_type random) or with latin hypercube Monte
Carlo (by specifyingsample_type lhs). Lastly, theresponse_thresholds
specification supplies a list ofm real values for comparison with them response functions being
computed. Table 50 provides the specification detail for the Monte Carlo probability method

Table 50 Specification detail for the Monte Carlo probability method

Description Specification Sample Status Default

Monte Carlo
probability

({nond_probability} ...) nond_probability Required
group

N/A

observations {observations =
<INTEGER>}

observations = 100 Required N/A

random seed [seed = <INTEGER>] seed = 1 Optional 1

sample type {sample_type} {random} |
{lhs}

sample_type, lhs Required N/A

response_thresho
lds

{response_thresholds =
<LISTof> <REAL>}

response_thresholds
= 1.0, 2.0

Required N/A
User’s Instructions Method Commands - Nondeterministic Methods 175

ter

ata

s the

 the
rs, or an
in

t

ay,
ls for

 in
f

 a
udy the
Mean Value Method

The mean value method is selected using thenond_mean_value specification. This iterator
computes approximate response function distribution statistics based on specified parame
distributions. The mean value method is a direct method and does not perform any random
sampling.

Theresponse_filenames specification supplies a list of file name strings for response d
files which the mean value algorithm will process to determine the failure probability.

The specifics of this computation within the mean value implementation are currently
application-dependent, but generalization is a pending development item. Table 51 provide
specification detail for the mean value method.

Parameter Study Methods

DAKOTA’s parameter study methods compute response data sets at a selection of points in
parameter space. These points may be specified as a vector, a list, a set of centered vecto
n-dimensional hyper-surface. DAKOTA implements all of the parameter study methods with
theParamStudy class.

DAKOTA’s parameter study methods do not currently make use of the method independen
controls formax_iterations , max_function_evaluations ,
convergence_tolerance , speculative gradients,output verbosity, or
linear_constraints . Since each of the parameter study methods is consistent in this w
the parameter study documentation which follows is limited to the method dependent contro
the vector, list, centered, and multidimensional parameter study methods.

Capability overviews and examples of the different types of parameter studies are provided
Parameter Study Capabilities on page 62. The following discussions focus on the details o
command specification.

Vector Parameter Study

DAKOTA’s vector parameter study computes response data sets at selected intervals along
vector in parameter space. It encompasses both single-coordinate parameter studies (to st

Table 51 Specification detail for the mean value method

Description Specification Sample Status Default

Mean value
method

({nond_mean_value} ...) nond_mean_value Required
group

N/A

response
filenames

{response_filenames =
<LISTof> <STRING>}

response_filenames =
‘r1.dat’, ‘r2.dat’

Required N/A
User’s Instructions Method Commands - Parameter Study Methods 176

tigate

-

es up
t

effect of a single variable on a response set) and multiple coordinate vector studies (to inves
the response variations along some n-dimensional vector). This study is selected using the
vector_parameter_study specification followed by either afinal_point or a
step_vector specification.

The vector for the study can be defined in several ways. First, afinal_point specification,
when combined with the Initial Values (see Initial Values on page 63), uniquely defines an n
dimensional vector’s direction and magnitude through its start and end points. The intervals
along this vector may either be specified with astep_length or anum_steps specification.
In the former case, steps of equal length (Cartesian distance) are taken from the Initial Valu
to (but not past) thefinal_point . The study will terminate at the last full step which does no
go beyond thefinal_point . In the latternum_steps case, the distance between the Initial
Values and thefinal_point is broken intonum_steps intervals of equal length. This study
starts at the Initial Values and ends at thefinal_point , making the total number of
simulations equal tonum_steps+1 . Thefinal_point specification detail is given in Table
52.

The other technique for defining a vector in the study is thestep_vector specification. This
parameter study starts at the Initial Values and adds the increments specified instep_vector
to obtain new simulation points. This process is performednum_steps times, and since the
Initial Values are included, the total number of simulations is again equal tonum_steps+1 .
Thestep_vector specification detail is given in Table 53.

Table 52 final_point specification detail for the vector parameter study

Description Specification Sample Status Default

Vector parameter
study

({vector_parameter_study}
...)

vector_parameter_
study

Required
group

N/A

Final point with
step length or
number of steps

({final_point =
<LISTof><REAL>}
{step_length = <REAL>} |
{num_steps =
<INTEGER>})

final_point =
1.0,2.0 num_steps
= 10

Required
group

N/A

Table 53 step_vector specification detail for the vector parameter
study

Description Specification Sample Status Default

Vector parameter
study

({vector_parameter_study}
...)

vector_parameter_
study

Required
group

N/A

Step vector and
number of steps

({step_vector =
<LISTof><REAL>}
{num_steps =
<INTEGER>})

step_vector = 1.,
1., 1. num_steps =
10

Required
group

N/A
User’s Instructions Method Commands - Parameter Study Methods 177

ch

y

d.
y

t

one

nt

on
Refer to Vector Parameter Study on page 63 for example specifications and the function
evaluations that result.

List Parameter Study

DAKOTA’s list parameter study allows for evaluations at user selected points of interest whi
need not be colinear or coplanar. This study is selected using thelist_parameter_study
method specification followed by alist_of_points specification.

The number of real values in thelist_of_points specification must be a multiple of the
total number of continuous variables specified in the variables section. This parameter stud
simply performs simulations for the first parameter set (the firstn entries in the list), followed by
the next parameter set (the nextn entries), and so on, until the list of points has been exhauste
Since the Initial Values will not be used, they need not be specified. The list parameter stud
specification detail is given in Table 54.

The samplelist_of_points specification shown in Table 54 would perform simulations a
the 4 corners of a square with edge length of 0.5 for a set of 2 variables.

Centered Parameter Study

DAKOTA’s centered parameter study computes response data sets along multiple vectors,
per parameter, centered about the specified Initial Values. This is useful for investigation of
function contours with respect to each parameter individually in the vicinity of a specific poi
(e.g., post-optimality analysis for verification of a minimum). It is selected using the
centered_parameter_study method specification followed bypercent_delta and
deltas_per_variable specifications, wherepercent_delta specifies the size of the
increments in percent anddeltas_per_variable specifies the number of increments per
variable in each of the plus and minus directions. The centered parameter study specificati
detail is given in Table 55.

Table 54 Specification detail for the list parameter study

Description Specification Sample Status Default

List parameter
study

(
{list_parameter_study
} ...)

list_parameter_study Required
group

N/A

List of points {list_of_points =
<LISTof> <REAL>}

list_of_points = 0.0,
0.0, 0.5, 0.0, 0.5, 0.5,
0.0, 0.5

Required N/A
User’s Instructions Method Commands - Parameter Study Methods 178

sional
ween
 of

ntries
he
Refer to Centered Parameter Study on page 66 for example specifications and the function
evaluations that result.

Multidimensional Parameter Study

DAKOTA’s multidimensional parameter study computes response data sets for an n-dimen
hypergrid of points. Each continuous variable is partitioned into equally spaced intervals bet
its upper and lower bounds, and each combination of the values defined by the boundaries
these partitions is evaluated. This study is selected using themultidim_parameter_study
method specification followed by apartitions specification, where the partitions list
specifies the number of partitions for each continuous variable. Therefore, the number of e
in the partitions list must be equal to the total number of continuous variables specified in t
variables section. Since the Initial Values will not be used, they need not be specified. The
multidimensional parameter study specification detail is given in Table 56.

Refer to Multidimensional Parameter Study on page 67 for example specifications and the
function evaluations that result.

Table 55 Specification detail for the centered parameter study

Description Specification Sample Status Default

Centered
parameter study

(
{centered_parameter_study}
...)

centered_paramete
r_study

Required
group

N/A

Interval size in
percent

{percent_delta = <REAL>} percent_delta = 1.0 Required N/A

Number of +/-
deltas per
variable

{deltas_per_variable =
<INTEGER>}

deltas_per_variabl
e = 5

Required N/A

Table 56 Specification detail for the multidimensional parameter study

Description Specification Sample Status Default

Multidimensional
parameter study

({multidim_parameter_study}
...)

multidim_para
meter_study

Required
group

N/A

Partitions per
variable

{partitions = <LISTof>
<INTEGER>}

partitions = 4
2 4

Required N/A
User’s Instructions Method Commands - Parameter Study Methods 179

he

 the
ites,

y

and

your

y

Installation Guide
Distributions and Checkouts on page 180Basic Installation on page 180Configuration Details on page 181 Configuring with specific vendor optimizers on page 183Configuring with the Message Passing Interface on page 184Makefile Details on page 184Caveats on page 186 Intel cross-compilation on page 186System modifications on page 186

Distributions and Checkouts

Installation of DAKOTA can be done from a distribution file (tape, CD, secure Web site
download, etc.) or a checkout from the Concurrent Version System (CVS) repository.

If you are extracting DAKOTA from a distribution file, first extract the distribution
(Dakota.tar.gz) from the tape/CD/Web and move it to your installation directory. Then t
following steps are performed:

gunzip Dakota.tar.gz
tar xvf Dakota.tar

If you are accessing current files from the CVS repository, you first need to have access to
CVS software on your workstation. You can get CVS via anonymous ftp from a number of s
for instance,prep.ai.mit.edu in directorypub/gnu . Next, you need to be in thedakota
developers’ group and have your$CVSROOTenvironment variable set to the repository director
where DAKOTA resides (i.e.,/usr/local/eng_sci/CVS). If, in addition, you are using the
remote client-server capabilities of CVS, then the$CVSROOT variable needs a machine prefix
(i.e.,sass2248:/usr/local/eng_sci/CVS) and the$CVS_RSH environment variable
must specify the remote shell program to use (e.g.,rsh , ssh). The following steps can then be
executed to check out the repository:

newgrp dakota
cd $HOME
cvs checkout Dakota

Basic Installation

Now that the DAKOTA files have been checked out or extracted, the next step is to configure
build the system using the following steps:

1) setenv DAKOTA $HOME/Dakota
2) cd $DAKOTA
3) ln -s <RogueWaveInstallationDir> rogue
4) ln -s <MPI_InstallationDir> mpi
5) configure <config_options>
6) make

Omission of step 1 is a common error; therefore it is wise to set this environment variable in
.cshrc file. Of course,$DAKOTA does not have to be set to$HOME/Dakota . If one wishes a
different installation location or is maintaining multiple repositories or configurations of
DAKOTA code, then$DAKOTA should be set and/or managed accordingly. This is in fact wh
the$DAKOTA variable exists.
Configuration Management Installation Guide - Distributions and Checkouts 180

lity

r

e

ave

e

ave

et

d

tion

ted for
The DAKOTA software relies upon the Rogue Wave Tools.h++ software, which is a C++ uti
library for data management with vector classes, linked lists, hash tables, etc. If you are
compiling on a Sun/Solaris host platform, this may be available as part of the C++ compile
distribution. If not, you will need to purchase a license for this product and install it on your
workstation. Since there is no standard location for the Rogue Wave Tools.h++ software, th
configure fragment files assume that the Rogue Wave software is installed in the directory
$DAKOTA/rogue . Step 3 creates a symbolic link from this directory to the actual Rogue W
installation directory.

To build DAKOTA with message-passing capability for parallel platforms, the MPI software
must be installed on the target machine. There is no standard location for the MPI software
(although/usr/local/mpi is common). Consequently, the configure fragment files assum
that MPI is located in the directory$DAKOTA/mpi. Thus, step 4 creates a symbolic link from
this directory to the actual MPI installation directory.

In both steps 3 and 4, the symbolic links must point to the directory level within the Rogue W
and MPI distributions which contains thebin , lib , andinclude directories.

In step 5, the DAKOTA software is configured for building on specific hosts for specific targ
platforms. In the top-level directory defined by$DAKOTA, there exists a shell script called
configure which is a program designed to automate much of the setup activity associate
with building large suites of programs on various hardware platforms. Some of what
configure does:

• makes symbolic links so that files used for configuration can be accessed from one loca

• generates Makefiles so that objects, libraries, executables and other ‘targets’ can be crea
specific and unique hardware platforms

• calls itself recursively so that sub-directories can also be configured

Refer to Configuration Details on page 181 and the Cygnus configure documentation
($DAKOTA/docs/configure.ps) for information on configure operations and options.
Running configure without any options will result in inclusion of all vendor packages and
exclusion of MPI.

In step 6, the Makefiles generated in the configure step are executed with themake command.
Refer to Makefile Details on page 184 for additional information.

Configuration Details

The full parameter list for theconfigure script is below:
configure hosttype [--target=target] [--srcdir=dir] [--rm]

[--site=site] [--prefix=dir] [--exec-prefix=dir]
[--program-prefix=string] [--tmpdir=dir]
[--with-package[=yes/no]] [--without-package]
[--enable-feature[=yes/no]] [--disable-feature]
Configuration Management Installation Guide - Configuration Details 181

ively)

PT,
r

laris

ess

d

cified

e

o
ration
[--norecursion] [--nfp] [-s] [-v] [-V | - version]
[--help]

Makefiles are custom created fromMakefile.in template files which outline the basic
“targets” that can be built for each directory. Variables that are package, site or hardware
dependent are stored in individual “fragment” files in the$DAKOTA/config directory. These
fragment files are added to the custom Makefiles when users and code developers (recurs
configure this repository with specific host, target, package, and/or site parameters.

An example configuration command for a native build on a Sun/Solaris host using the SGO
DOT, NPSOL, and OPT++ vendor optimizer packages (see Configuring with specific vendo
optimizers on page 183 for more info on packages) follows:

configure

NOTE: Thehosttype and--target parameters are not necessary since available system
information can be acquired from your local machine. If your Sun workstation is running So
2.5.1, then theconfig.guess script will provideconfigure with the triplet ‘sparc-
sun-solaris2.5.1 ’. If you wish to supply ahosttype parameter for a Sun/Solaris
system, ‘sun4sol2 ’ is preferred.

Runningconfigure takes a while, be patient. Verbose output will always be displayed unl
the user/developer wishes to silence it by specifying the parameter,--silent . If you wish to
configure only one level/directory, please remember to use the option--norecursion . All
generatedconfig.status files include this parameter as a default for easy Makefile
regeneration.

After your configure command is completed, three files will be generated in each configure
directory (specified by the fileconfigure.in).

1. Makefile.${target_vendor}

The${target_vendor} suffix will depend on the target specified (i.e., “sun ” for the
command above). Native builds have identical host and target vendor values. If you spe
a “--target=tflop ” parameter, thenMakefile.intel files would then be created for
a cross-compilation build on the Solaris host for the Sandia Intel TFLOP (i.e.,janus) target
platform.

2. Makefile

This will be a symbolic link to the file mentioned above. A user/developer will simply typ
“make” and the last generatedMakefile.${target_vendor} will then be referenced.

3. config.status

This is a “recording” of the configuration process (i.e., what commands were executed t
generate the Makefile). It can be used by the custom Makefile to regenerate the configu
with the “make Makefile ” command.
Configuration Management Installation Guide - Configuration Details 182

 the

,

gets

s

for

rs:
Fragment files exist so thatconfigure can support multi-platform environments. DAKOTA
can be configured for code development and execution on the following platforms :

SPARC-SUN-SOLARIS2.5.1or higher (i.e., Sun ULTRAsparc)
MIPS-SGI-IRIX6.5or higher (i.e., SGI Octane)
HPPA1.1-HP-HPUX9.05or higher (i.e., HP 9000/700 series)
PENTIUM-INTEL-COUGARor higher (i.e., Intel TFLOP

supercomputer)

Below is a list of the fragment files used for configuring this software and examples of what
dependent information they contain. They are listed in the order in which they will appear in
generated Makefiles. Inclusion of these fragment files is controlled by theconfigure.in file
and any parameters you specify (i.e.,--with-<PACKAGE> or --target=<TGT_ALIAS>)
with theconfigure command.

• The following files contain package variables for location/definition of package source,
include, library, defines, etc.

mp-opt++
mp-npsol
mp-dot-dp
mp-dot-sp
mp-sgopt
mp-stdlib
mp-mpi
mp-bayes
mp-cluster
mp-dakota
mp-idr
mp-twafer

• The following files contain target variables that help build Makefile targets (i.e., CC, CCC
AR, LEX, ARCH_DEFINES, ARCH_INCLUDES, ARCH_LIBS, etc.)

mt-solaris
mt-irix
mt-hpux
mt-cougar

• The following files contain host variables for administration/management of Makefile tar
(i.e., AWK, CHMOD, RM, MKDIR, CD, etc.)

mh-solaris
mh-irix
mh-hpux
mh-cougar

• The following file contains site variables and macros for overriding implicit Makefile rule
when building objects, archives, etc. It is always included by default in every generated
Makefile unless overridden by a parameter (--site=...) to configure .

ms-dakota.std

Configuring with specific vendor optimizers

All of the available vendor optimizers (DOT, NPSOL, OPT++, and SGOPT) are configured
building by default. If the user/developer wishes to configure DAKOTA without any of the
vendor optimizer packages, he/she must specify any combination of the following paramete-
-without-dot , --without-npsol , --without-optpp , or --without-sgopt .
Some examples follow:
Configuration Management Installation Guide - Configuration Details 183

ries

fault
e-

P

• configure --without-npsol --without-sgopt
Configure and generate Makefiles that construct an
executable using libraries from the DOT and OPT++ optimizers
only .

• configure --without-opt++
Configure and generate Makefiles that construct an
executable using libraries from the DOT, NPSOL, and SGOPT
optimizers only .

Each of the configured vendor optimizer packages will contain their own individual ‘build’
directories. See Makefile Details on page 184 for more information concerning build directo
and how they manage multi-platform binaries.

Configuring with the Message Passing Interface

The Message Passing Interface (MPI) package will not be configured into DAKOTA as a de
unless the user configures for the Intel TFLOP target. If the user wishes to use this messag
passing library on parallel platforms other than the Intel TFLOP distributed memory
supercomputer, then--with-mpi must be specified. If the user configures for the Intel TFLO
target and doesnot wish to use MPI, then--without-mpi must be specified. Refer to
Master-slave algorithm on page 103 for more information about the use of MPI within
DAKOTA. Several examples follow:

• configure --target=tflop
Configure and generate Makefiles that construct an
executable for the Intel TFLOP platform using libraries from
the DOT, NPSOL, SGOPT, and OPT++ optimizers and the MPI
software package.

• configure --with-mpi
Configure and generate Makefiles that construct an
executable on your native platform (i.e., Solaris) using
libraries from the DOT, NPSOL, SGOPT and OPT++ optimizers
and the MPI software package.

• configure --target=tflop --without-mpi --without-sgopt
Configure and generate Makefiles that construct an
executable for the Intel TFLOP platform using libraries from
the DOT, NPSOL and OPT++ optimizers only .

Makefile Details

Some versions ofmake fail to build the system properly. Themake program in/usr/ccs/
bin is preferred to/usr/local/bin/make on the Sun platform, andgmake is often
preferred on other platforms. The version ofmake invoked by default can be queried by
executing the command:

which make
Configuration Management Installation Guide - Makefile Details 184

l

ted

in the
r
ed for
 is
 files, it
source

pile

to

.

s an
n
laris
If this is not the desiredmake, then the$path environment variable can be modified as in the
following:

set path = (/usr/ccs/bin $path)

As with the$DAKOTA environment variable, it may be desirable to add this$path addition to
the.cshrc file to render the change permanent.

As stated in Basic Installation on page 180, building/compiling the system after a successfu
configuration entails invoking the command “make” from the top-level$DAKOTAdirectory. The
latestMakefile.${target_vendor} generated byconfigure will be referenced by this
command (due to theMakefile symbolic link). Please note that build directories are genera
to store object/library files and binaries for a particular target platform. If you configured
DAKOTA for a native build on a Sun/Solaris host, your build directories will all be called
sparc-sun-solaris2.5.1 . If you configured DAKOTA for the Intel TFLOP platform,
your build directories will all be called,pentium-intel-cougar .

During an initialmake process, every makefile generates dependencies for the source files
makefile’s directory prior to actually compiling the object files and linking the libraries and/o
executables. These dependencies are appended to the bottom of the makefiles and are us
managing which source files must be recompiled whenever header files are modified. This
needed because, while a standard makefile manages the dependency of targets on source
does not manage the dependence of source files on header files. If a developer changes the
file dependencies (e.g., by adding or removing#include directives), a “make Makefile ”
command can be used to create a fresh makefile and then a “make” command will create an
updated dependency list, append the dependency list to the new makefile, and then recom
only the affected source modules.

You can remove object files, libraries, and executables from the build directories by typing
“make clean ”. The clean target will also cause regeneration of dependencies. If you wish
reconfigure your DAKOTA source from scratch or regenerate all custom makefiles, “make
distclean ” can be used to remove all symbolic links, custom makefiles, and
config.status files. Once in this state, the system must be reconfigured prior to building

Each set of target “build” directories (and the object/library files and binaries they contain) i
independent entity. After configuring and building DAKOTA for a Sun/Solaris target, you ca
configure and build for, say, an Intel/TFLOP target, without destroying any previous Sun/So
files. Only theMakefile symbolic links are overwritten. Specific target binaries and object/
library files get removed with a “clean ” rule and specific target/build directories get removed
with a “distclean ” rule. Thus, a cleaning operation for one platform will not interfere with
other platform files. However, multiple “clean ” or “distclean ” executions may be needed
for each target platform in order to completely clean a distribution.

After a successful build, the actual “dakota ” executable is located in the build directory within
$DAKOTA/src (e.g.,$DAKOTA/src/sparc-sun-solaris2.5.1/dakota). In
addition, test simulator executables reside in the build directory within$DAKOTA/test (e.g.,
Configuration Management Installation Guide - Makefile Details 185

urce
ry

vent

used
w so
$DAKOTA/test/sparc-sun-solaris2.5.1/text_book). Symbolic links to these
executables are provided in the$DAKOTA/test directory for testing convenience.

Caveats

Intel cross-compilation

The InteliCC compilers provided by the Portland Group for the Cougar operating system
require that the object and template instantiation files reside in the same directory as the so
files for linking of thedakota executable. Therefore, the variable specifying the build directo
in the dakota source (nominally$DAKOTA/src/pentium-intel-cougar) must be
overridden in the source Makefile ($DAKOTA/src/Makefile.intel) to ensure that the
objects are placed in the source directory, rather than a build subdirectory. To perform this
override, two modifications must be made toMakefile.intel . Change the line:

DAKOTA_SRC_BUILD = $(DAKOTA_SRC)/$(target_canonical)

to
DAKOTA_SRC_BUILD = $(DAKOTA_SRC)

and then remove or comment out the following line from the distclean target in order to pre
removal of the source directory on a “make distclean ”:

$(RM) -r $(DAKOTA_SRC_BUILD)

System modifications

If you need to do unusual things to build this system, please determine if configure can be
to accomplish them. Notify us via e-mail by sending instructions to the address shown belo
that a future release can incorporate your recommendations.

Michael S. Eldred, Sandia National Laboratories,
mseldre@sandia.gov
Configuration Management Installation Guide - Caveats 186

ed
top

uring
Installation Examples
Sun Solaris platform on page 187

Sun Solaris platform

After checking out the repository or extracting the tape archive, a Dakota directory will be
present which is ready for configuration and compilation. An example configuration perform
on the Sandia JAL LAN is supplied in which the Dakota directory has been installed at the
level of a user directory.

First, one sets environment variables, changes directories to the correct directory for config
and building, and installs soft links to the Rogue Wave Tools.h++ and MPI installation
directories, e.g.:

setenv DAKOTA $HOME/Dakota
cd $DAKOTA
ln -s /usr/sharelan/dakota/rogue_wave/rogue rogue
ln -s /usr/local/mpi mpi

From this directory, executing the command
./configure --with-mpi

gives the following output with omissions as marked:
Configuring for a sparc-sun-solaris2.5.1 host.
Linked "Makefile" to "./Makefile.sun".
Created "Makefile.sun" in /home/mseldre/Dakota using "config/mh-solaris" and
"config/mt-solaris" and "./config/ms-dakota.std"
Configuring idr...
Linked "config" to "./../config".
Linked "Makefile" to "./Makefile.sun".
Created "Makefile.sun" in /home/mseldre/Dakota/idr using "config/mh-solaris" and
"config/mt-solaris" and "./config/ms-dakota.std"
Configuring VendorOptimizers...
Linked "config" to "./../config".
Linked "Makefile" to "./Makefile.sun".
Created "Makefile.sun" in /home/mseldre/Dakota/VendorOptimizers using "config/
mh-solaris" and "config/mt-solaris" and "./config/ms-dakota.std"
Configuring sgopt...
sparc-sun-solaris2.5.1
Host/Target/Site Configuration:
 HOST solaris
 TARGET solaris
 SITE dakota.std
 COMPILER
config/mp-solaris-dakota.std does not exist! Using a default configuration!
Package Configuration:
 MPI no
 TCC no
 GM no
 COBYLA no
 OPTIMIZATION <default>
Linked "Makefile" to "./Makefile.sun".
Created "Makefile.sun" in /home/mseldre/Dakota/VendorOptimizers/sgopt using
"config/mf-solaris-solaris-dakota.std" and "./config/ms-dakota.std"
<<omission of SGOPT subdirectories>>
Configuring DOT...
Linked "config" to "./../../config".
Linked "Makefile" to "./Makefile.sun".
Created "Makefile.sun" in /home/mseldre/Dakota/VendorOptimizers/DOT using
"config/mh-solaris" and "config/mt-solaris" and "./config/ms-dakota.std"
Configuring NPSOL...
Configuration Management Installation Examples - Sun Solaris platform 187

Linked "config" to "./../../config".
Linked "Makefile" to "./Makefile.sun".
Created "Makefile.sun" in /home/mseldre/Dakota/VendorOptimizers/NPSOL using
"config/mh-solaris" and "config/mt-solaris" and "./config/ms-dakota.std"
Configuring opt++...
Linked "config" to "./../../config".
Linked "Makefile" to "./Makefile.sun".
Created "Makefile.sun" in /home/mseldre/Dakota/VendorOptimizers/opt++ using
"config/mh-solaris" and "config/mt-solaris" and "./config/ms-dakota.std"
<<omission of OPT++ subdirectories>>
Configuring src...
Linked "config" to "./../config".
Linked "Makefile" to "./Makefile.sun".
Created "Makefile.sun" in /home/mseldre/Dakota/src using "config/mh-solaris" and
"config/mt-solaris" and "./config/ms-dakota.std"
Configuring test...
Linked "config" to "./../config".
Linked "Makefile" to "./Makefile.sun".
Created "Makefile.sun" in /home/mseldre/Dakota/test using "config/mh-solaris"
and "config/mt-solaris" and "./config/ms-dakota.std"

as it generates Makefiles in the DAKOTA subdirectories.

Now that Makefiles have been created, executing the command
make

from the same$DAKOTAdirectory will build the system. While this output is too lengthy to fully
replicate here, some excerpts are provided below with omissions as marked:

==
= Building Input Deck Reader executable: 'idrtest' - BEGIN =
==
if [! -d $DAKOTA/idr/sparc-sun-solaris2.5.1]; then \
 mkdir -m 775 $DAKOTA/idr/sparc-sun-solaris2.5.1; \
fi
/usr/ccs/bin/make -f Makefile.sun $DAKOTA/idr/sparc-sun-solaris2.5.1/idrtest

<<omission>>

==
= Building Input Deck Reader executable: 'idrtest' - END =
==

===
= Install DAKOTA software - BEGIN =
===
===
= Install Input Deck Reader library - BEGIN =
===
if [! -d $DAKOTA/idr/sparc-sun-solaris2.5.1]; then \
 mkdir -m 775 $DAKOTA/idr/sparc-sun-solaris2.5.1; \
fi
/usr/ccs/bin/make -f Makefile.sun library

Archiving Object File(s) -- idr.o idr-parser.o

ar ru $DAKOTA/idr/sparc-sun-solaris2.5.1/libidr.a $DAKOTA/idr/sparc-sun-
solaris2.5.1/idr.o $DAKOTA/idr/sparc-sun-solaris2.5.1/idr-parser.o
ar: creating $DAKOTA/idr/sparc-sun-solaris2.5.1/libidr.a
ls -lF $DAKOTA/idr/sparc-sun-solaris2.5.1/libidr.a
-rw-rw-r-- 1 <user> <user> 46684 Jan 8 09:52 $DAKOTA/idr/sparc-sun-
solaris2.5.1/libidr.a

===
= Install Input Deck Reader library - END =
===
===
= Install DAKOTA VendorOptimizers - BEGIN =
===
Configuration Management Installation Examples - Sun Solaris platform 188

(for DIRS in sgopt DOT NPSOL opt++; do \
 cd ${DIRS}; /usr/ccs/bin/make -f Makefile.sun install; cd ..; \
done)
==
= Install SGOPT Software - BEGIN =
==
if [! -d $DAKOTA/VendorOptimizers/sgopt/sparc-sun-solaris2.5.1]; then \
 mkdir -m 775 $DAKOTA/VendorOptimizers/sgopt/sparc-sun-solaris2.5.1; \
fi
(for DIRS in packages src examples; do \
 cd ${DIRS}; /usr/ccs/bin/make -f Makefile.sun install; cd ..; \
done)

<<omission>>

==
= Install SGOPT Software - END =
==
=======================================
= Install DOT Package - BEGIN =
=======================================
if [! -d $DAKOTA/VendorOptimizers/DOT/sparc-sun-solaris2.5.1]; then \
 mkdir -m 775 $DAKOTA/VendorOptimizers/DOT/sparc-sun-solaris2.5.1; \
fi
(/usr/ccs/bin/make -f Makefile.sun library);

<<omission>>

=======================================
= Install DOT Package - END =
=======================================
=======================================
= Install NPSOL Package - BEGIN =
=======================================
if [! -d $DAKOTA/VendorOptimizers/NPSOL/sparc-sun-solaris2.5.1]; then \
 mkdir -m 775 $DAKOTA/VendorOptimizers/NPSOL/sparc-sun-solaris2.5.1; \
fi
(/usr/ccs/bin/make -f Makefile.sun library);

<<omission>>

=======================================
= Install NPSOL Package - END =
=======================================
===
= Install OPT++ Package - BEGIN =
===
if [! -d $DAKOTA/VendorOptimizers/opt++/sparc-sun-solaris2.5.1]; then \
 mkdir -m 775 $DAKOTA/VendorOptimizers/opt++/sparc-sun-solaris2.5.1; \
fi

<<omission>>

==
= Install OPT++ Package - END =
==
===
= Install DAKOTA VendorOptimizers - END =
===
==
= Install DAKOTA Source - BEGIN =
==
if [! -d $DAKOTA/src/sparc-sun-solaris2.5.1]; then \
 mkdir -m 775 $DAKOTA/src/sparc-sun-solaris2.5.1; \
fi
(/usr/ccs/bin/make -f Makefile.sun $DAKOTA/src/sparc-sun-solaris2.5.1/
libdakota.a);

<<omission>>

(/usr/ccs/bin/make -f Makefile.sun $DAKOTA/src/sparc-sun-solaris2.5.1/dakota);
Configuration Management Installation Examples - Sun Solaris platform 189

Linking Object File(s) -- Creating DAKOTA executable: dakota

CC -fast -D__EXTERN_C__ -DDAKOTA_SGOPT -DDAKOTA_DOT -DDAKOTA_NPSOL -
DDAKOTA_OPTPP -DNEWMAT -DSERIAL -DUNIX -DSOLARIS -DMULTITASK -I$DAKOTA/src/. -
I$DAKOTA/idr/. -I$DAKOTA/VendorOptimizers/sgopt/include/. -I$DAKOTA/
VendorOptimizers/sgopt/packages/stdlib/include/. -I$DAKOTA/VendorOptimizers/DOT/
include/. -I$DAKOTA/VendorOptimizers/NPSOL/include/. -I$DAKOTA/VendorOptimizers/
opt++/include/. -L/opt/SUNWspro/SC4.2/lib -o $DAKOTA/src/sparc-sun-
solaris2.5.1/dakota $DAKOTA/src/sparc-sun-solaris2.5.1/main.o
$DAKOTA/src/sparc-sun-solaris2.5.1/decomp.o $DAKOTA/src/
sparc-sun-solaris2.5.1/init_parallel_lib.o $DAKOTA/src/sparc-sun-
solaris2.5.1/keywordtable.o $DAKOTA/src/sparc-sun-solaris2.5.1/
CommandLineHandler.o $DAKOTA/src/sparc-sun-solaris2.5.1/DakotaModel.o
$DAKOTA/src/sparc-sun-solaris2.5.1/DakotaVariables.o $DAKOTA/src/
sparc-sun-solaris2.5.1/DakotaResponse.o $DAKOTA/src/sparc-sun-
solaris2.5.1/DakotaInterface.o $DAKOTA/src/sparc-sun-solaris2.5.1/
ApplicationInterface.o $DAKOTA/src/sparc-sun-solaris2.5.1/
SysCallApplicInterface.o $DAKOTA/src/sparc-sun-solaris2.5.1/
DirectFnApplicInterface.o $DAKOTA/src/sparc-sun-solaris2.5.1/
DirectFnTextBook.o $DAKOTA/src/sparc-sun-solaris2.5.1/
ExecutableProgram.o $DAKOTA/src/sparc-sun-solaris2.5.1/AnalysisCode.o
$DAKOTA/src/sparc-sun-solaris2.5.1/CommandShell.o $DAKOTA/src/
sparc-sun-solaris2.5.1/ParamResponsePair.o $DAKOTA/src/sparc-sun-
solaris2.5.1/ProblemDescDB.o $DAKOTA/src/sparc-sun-solaris2.5.1/
DataMethod.o $DAKOTA/src/sparc-sun-solaris2.5.1/DataVariables.o
$DAKOTA/src/sparc-sun-solaris2.5.1/DataResponses.o $DAKOTA/src/
sparc-sun-solaris2.5.1/DataInterface.o $DAKOTA/src/sparc-sun-
solaris2.5.1/DakotaStrategy.o $DAKOTA/src/sparc-sun-solaris2.5.1/
SingleMethodStrategy.o $DAKOTA/src/sparc-sun-solaris2.5.1/
MultilevelOptStrategy.o $DAKOTA/src/sparc-sun-solaris2.5.1/
SeqApproxOptStrategy.o $DAKOTA/src/sparc-sun-solaris2.5.1/NonDOptStrategy.o
$DAKOTA/src/sparc-sun-solaris2.5.1/DakotaIterator.o $DAKOTA/src/
sparc-sun-solaris2.5.1/ParamStudy.o $DAKOTA/src/sparc-sun-
solaris2.5.1/DakotaNonD.o $DAKOTA/src/sparc-sun-solaris2.5.1/
NonDProbability.o $DAKOTA/src/sparc-sun-solaris2.5.1/NonDMeanValue.o
$DAKOTA/src/sparc-sun-solaris2.5.1/Lhs.o $DAKOTA/src/
sparc-sun-solaris2.5.1/LhsInput.o $DAKOTA/src/sparc-sun-
solaris2.5.1/Vm_util.o $DAKOTA/src/sparc-sun-solaris2.5.1/
DakotaOptimizer.o $DAKOTA/src/sparc-sun-solaris2.5.1/DOTOptimizer.o
$DAKOTA/src/sparc-sun-solaris2.5.1/SNLLOptimizer.o
$DAKOTA/src/sparc-sun-solaris2.5.1/SGOPTOptimizer.o $DAKOTA/src/sparc-sun-
solaris2.5.1/SGOPTRealApplication.o $DAKOTA/src/
sparc-sun-solaris2.5.1/NPSOLOptimizer.o $DAKOTA/src/sparc-sun-solaris2.5.1/
npoptn_wrapper.o $DAKOTA/idr/sparc-sun-solaris2.5.1/libidr.a $DAKOTA/
VendorOptimizers/sgopt/sparc-sun-solaris2.5.1/libsgopt.a $DAKOTA/
VendorOptimizers/sgopt/packages/stdlib/sparc-sun-solaris2.5.1/libstdlib.a
$DAKOTA/VendorOptimizers/DOT/sparc-sun-solaris2.5.1/libdot.a $DAKOTA/
VendorOptimizers/NPSOL/sparc-sun-solaris2.5.1/libnpsol.a $DAKOTA/
VendorOptimizers/opt++/sparc-sun-solaris2.5.1/liboptpp.a -lrwtool -lM77 -lF77 -
lsunmath -ll -ly -lm

==
= Install DAKOTA Source - END =
==
===
= Install DAKOTA Test code - BEGIN =
===
if [! -d $DAKOTA/test/sparc-sun-solaris2.5.1]; then \
 mkdir -m 775 $DAKOTA/test/sparc-sun-solaris2.5.1; \
fi

<<omission>>

===
= Install DAKOTA Test code - END =
===
==
= Install DAKOTA software - END =
==

You can now change directories to the test area
Configuration Management Installation Examples - Sun Solaris platform 190

cd test

and execute dakota on the test files therein, e.g.:
dakota -i dakota_textbook.in
Configuration Management Installation Examples - Sun Solaris platform 191

difying

ze the

ation

n

Textbook Example
Textbook Problem Formulation on page 192Methods on page 193Results on page 193 Optimization on page 193Least Squares on page 201

Textbook Problem Formulation

The optimization problem formulation is stated as
minimize

(8)

subject to

(9)

(10)

(11)

(12)

This example problem may also be used to exercise least squares solution methods by mo
the problem formulation to:

minimize

(13)

This modification is performed by simply changing the responses specification for the three
functions fromnum_objective_functions = 1 and
num_nonlinear_constraints = 2 to num_least_squares_terms = 3 . Note
that the 2 problem formulations are not equivalent and will have different solutions. More
specifically, the optimization solution seeks to find the minimum objective function which
satisfies the constraint inequalities, whereas the least squares formulation seeks to minimi
sum of the squares of the three residual functions.

Another way to exercise the least squares methods which would be equivalent to the optimiz

formulation would be to select the residual functions to be(x i -1) 2. However, this formulation

requires significant modification totext_book.C and will not be presented here. Equation
(13), on the other hand, does not require any modification totext_book.C . Refer to
Rosenbrock Example on page 204 for an example of minimizing the same objective functio
using both optimization and least squares approaches.

f x 1 1–()4 x 2 1–()4 … x n 1–()4+ + +=

g1 x 1
2 x 2

2
------–= 0≤

g2 x 2
2

0.5–= 0≤

0.5 x≤ 1 5.8≤

2.9– x≤ 2 2.9≤

f()2 g1()2 g2()2+ +
Example Problems Textbook Example - Textbook Problem Formulation 192

the
or the

thods

sured
Methods

DOT and NPSOL methods may be used to solve this optimization problem with or without
constraints. OPT++ methods may be used to solve the unconstrained optimization problem
least squares problem.

Thedakota_textbook.in file provided in theDakota/test directory selects a
dot_mmfd optimizer to perform constrained minimization using thetext_book simulator.
This simulator returns analytic gradients as requested by the optimizer.

A multilevel hybrid can also be demonstrated on thetext_book problem. The
dakota_multilevel.in file provided in theDakota/test directory starts with a
sgopt_pga_real solution which feeds its best point into asgopt_coord_sps
optimization which feeds its best point intooptpp_newton . While this approach is overkill for
such a simple problem, it is useful for demonstrating the coordination between multiple me
in the multilevel strategy.

In addition,dakota_textbook_3pc.in demonstrates the use of a 3-piece interface to
perform the parameter to response mapping anddakota_textbook_lhs.in demonstrates
the use of latin hypercube Monte Carlo sampling for assessing probability of failure as mea
by specified response thresholds.

Results

Optimization

The solution for the unconstrained optimization problem for 2 design variables is:
x1 = 1.0
x2 = 1.0

with
f* = 0.0

The solution for the optimization problem constrained byg1 is:

x1 = 0.763
x2 = 1.16

with
f* = 0.00388
g1* = 0.0 (active)

The solution for the optimization problem constrained byg1 andg2 is:

x1 = 0.594
x2 = 0.707
Example Problems Textbook Example - Methods 193

jective
were
with
f* = 0.0345
g1* = 0.0 (active)
g2* = 0.0 (active)

Note that as constraints are added, the design freedom is restricted and a penalty in the ob
function is observed. Of course, no penalty would be observed if the additional constraints
not active at the solution.

Thedot_sqp optimizer navigates to the constrained optimum in 12 function calls and 5
gradient calls (17 evaluations total). The output from this minimization is shown below:

MPI initialized with 1 processors.
Writing new restart file dakota.rst
Constructing Single Method Strategy...
no method_pointer: last specifications parsed will be used
methodName = dot_sqp
gradientType = analytic
hessianType = none
Running MPI executable in serial mode.
Running Single Method Strategy...

 DDDDD OOOOO TTTTTTT
 D D O O T
 D D == O * O == T
 D D O O T
 DDDDD OOOOO T

 DESIGN OPTIMIZATION TOOLS

 (C) COPYRIGHT, 1995

 VR&D

 ALL RIGHTS RESERVED, WORLDWIDE

 VERSION 4.20

 - YOUR INTEGRITY IS OUR COPY PROTECTION -

 CONTROL PARAMETERS

 OPTIMIZATION METHOD, METHOD = 3
 NUMBER OF DECISION VARIABLES, NDV = 2
 NUMBER OF CONSTRAINTS, NCON = 2
 PRINT CONTROL PARAMETER, IPRINT = 3
 GRADIENT PARAMETER, IGRAD = 1
 GRADIENTS ARE SUPPLIED BY THE USER
 THE OBJECTIVE FUNCTION WILL BE MINIMIZED

Begin Function Evaluation 1

Example Problems Textbook Example - Results 194

Parameters for function evaluation 1:
 9.0000000000e-01 x1
 1.1000000000e+00 x2

(text_book text_book.in.1 text_book.out.1)

Active response data for function evaluation 1:
Active set vector = { 1 1 1 }
 2.0000000000e-04 obj_fn
 2.6000000000e-01 nln_con1
 7.1000000000e-01 nln_con2

 -- SCALAR PROGRAM PARAMETERS

 REAL PARAMETERS
 1) CT = -3.00000E-02 8) DX2 = 2.20000E-01
 2) CTMIN = 3.00000E-03 9) FDCH = 1.00000E-03
 3) DABOBJ = 2.00000E-08 10) FDCHM = 1.00000E-04
 4) DELOBJ = 1.00000E-04 11) RMVLMZ = 4.00000E-01
 5) DOBJ1 = 1.00000E-01 12) DABSTR = 2.00000E-08
 6) DOBJ2 = 2.00000E-01 13) DELSTR = 1.00000E-03
 7) DX1 = 1.00000E-02

 INTEGER PARAMETERS
 1) IGRAD = 1 6) NCOLA = 2 11) IPRNT1 = 0
 2) ISCAL = 1000 7) IGMAX = 0 12) IPRNT2 = 0
 3) ITMAX = 50 8) JTMAX = 50 13) JWRITE = 0
 4) ITRMOP = 2 9) ITRMST = 2
 5) IWRITE = 6 10) JPRINT = 0

 STORAGE REQUIREMENTS
 ARRAY DIMENSION REQUIRED
 WK 136 136
 IWK 81 81

 -- INITIAL VARIABLES AND BOUNDS

 LOWER BOUNDS ON THE DECISION VARIABLES (XL-VECTOR)
 1) 5.00000E-01 -2.90000E+00

 DECISION VARIABLES (X-VECTOR)
 1) 9.00000E-01 1.10000E+00

 UPPER BOUNDS ON THE DECISION VARIABLES (XU-VECTOR)
 1) 5.80000E+00 2.90000E+00

 -- INITIAL FUNCTION VALUES

 OBJ = 2.00000E-04

 CONSTRAINT VALUES (G-VECTOR)
 1) 2.60000E-01 7.10000E-01

 -- BEGIN CONSTRAINED OPTIMIZATION: SQP METHOD

 -- BEGIN SQP ITERATION 1

Begin Function Evaluation 2

Parameters for function evaluation 2:
 9.0000000000e-01 x1
 1.1000000000e+00 x2
Example Problems Textbook Example - Results 195

(text_book text_book.in.2 text_book.out.2)

Active response data for function evaluation 2:
Active set vector = { 2 2 2 }
 [-4.0000000000e-03 4.0000000000e-03] obj_fn gradient
 [1.8000000000e+00 -5.0000000000e-01] nln_con1 gradient
 [0.0000000000e+00 2.2000000000e+00] nln_con2 gradient

Begin Function Evaluation 3

Parameters for function evaluation 3:
 6.6386363636e-01 x1
 7.7590909091e-01 x2

(text_book text_book.in.3 text_book.out.3)

Active response data for function evaluation 3:
Active set vector = { 1 1 1 }
 1.5287930702e-02 obj_fn
 5.2760382226e-02 nln_con1
 1.0203491736e-01 nln_con2

Begin Function Evaluation 4

Duplication detected in response requests for this parameter set:
 6.6386363636e-01 x1
 7.7590909091e-01 x2

Active response data retrieved from database:
Active set vector = { 1 1 1 }
 1.5287930702e-02 obj_fn
 5.2760382226e-02 nln_con1
 1.0203491736e-01 nln_con2

 OBJ = 1.52879E-02

 DECISION VARIABLES (X-VECTOR)
 1) 6.63864E-01 7.75909E-01

 CONSTRAINT VALUES (G-VECTOR)
 1) 5.27604E-02 1.02035E-01

 GMAX = 1.0203E-01

 -- BEGIN SQP ITERATION 2

Begin Function Evaluation 5

Parameters for function evaluation 5:
 6.6386363636e-01 x1
 7.7590909091e-01 x2

(text_book text_book.in.5 text_book.out.5)

Active response data for function evaluation 5:
Active set vector = { 2 2 2 }
 [-1.5191703790e-01 -4.5012455672e-02] obj_fn gradient
 [1.3277272727e+00 -5.0000000000e-01] nln_con1 gradient
 [0.0000000000e+00 1.5518181818e+00] nln_con2 gradient
Example Problems Textbook Example - Results 196

Begin Function Evaluation 6

Parameters for function evaluation 6:
 5.9637770195e-01 x1
 7.0822402407e-01 x2

(text_book text_book.in.6 text_book.out.6)

Active response data for function evaluation 6:
Active set vector = { 1 1 1 }
 3.3787645889e-02 obj_fn
 1.5543513482e-03 nln_con1
 1.5812682699e-03 nln_con2

Begin Function Evaluation 7

Parameters for function evaluation 7:
 6.0987488883e-01 x1
 7.2176103744e-01 x2

(text_book text_book.in.7 text_book.out.7)

Active response data for function evaluation 7:
Active set vector = { 1 1 1 }
 2.9157489712e-02 obj_fn
 1.1066861305e-02 nln_con1
 2.0938995166e-02 nln_con2

Begin Function Evaluation 8

Parameters for function evaluation 8:
 6.1399879055e-01 x1
 7.2589710766e-01 x2

(text_book text_book.in.8 text_book.out.8)

Active response data for function evaluation 8:
Active set vector = { 1 1 1 }
 2.7844963118e-02 obj_fn
 1.4045960967e-02 nln_con1
 2.6926610909e-02 nln_con2

 OBJ = 2.78450E-02

 DECISION VARIABLES (X-VECTOR)
 1) 6.13999E-01 7.25897E-01

 CONSTRAINT VALUES (G-VECTOR)
 1) 1.40460E-02 2.69266E-02

 GMAX = 2.6927E-02

 -- BEGIN SQP ITERATION 3

Begin Function Evaluation 9

Parameters for function evaluation 9:
 6.1399879055e-01 x1
 7.2589710766e-01 x2

(text_book text_book.in.9 text_book.out.9)
Example Problems Textbook Example - Results 197

Active response data for function evaluation 9:
Active set vector = { 2 2 2 }
 [-2.3005198645e-01 -8.2376027758e-02] obj_fn gradient
 [1.2279975811e+00 -5.0000000000e-01] nln_con1 gradient
 [0.0000000000e+00 1.4517942153e+00] nln_con2 gradient

Begin Function Evaluation 10

Parameters for function evaluation 10:
 5.9089395588e-01 x1
 7.0528357263e-01 x2

(text_book text_book.in.10 text_book.out.10)

Active response data for function evaluation 10:
Active set vector = { 1 1 1 }
 3.5556238180e-02 obj_fn
 -3.4861192195e-03 nln_con1
 -2.5750821783e-03 nln_con2

Begin Function Evaluation 11

Parameters for function evaluation 11:
 5.9551492281e-01 x1
 7.0940627964e-01 x2

(text_book text_book.in.11 text_book.out.11)

Active response data for function evaluation 11:
Active set vector = { 1 1 1 }
 3.3898544900e-02 obj_fn
 -6.5116530600e-05 nln_con1
 3.2572695927e-03 nln_con2

Begin Function Evaluation 12

Parameters for function evaluation 12:
 5.9559270455e-01 x1
 7.0947567449e-01 x2

(text_book text_book.in.12 text_book.out.12)

Active response data for function evaluation 12:
Active set vector = { 1 1 1 }
 3.3871152259e-02 obj_fn
 -7.1675318164e-06 nln_con1
 3.3557326930e-03 nln_con2

 OBJ = 3.38712E-02

 DECISION VARIABLES (X-VECTOR)
 1) 5.95593E-01 7.09476E-01

 CONSTRAINT VALUES (G-VECTOR)
 1) -7.16753E-06 3.35573E-03

 GMAX = 3.3557E-03

 -- BEGIN SQP ITERATION 4
Example Problems Textbook Example - Results 198

Begin Function Evaluation 13

Parameters for function evaluation 13:
 5.9559270455e-01 x1
 7.0947567449e-01 x2

(text_book text_book.in.13 text_book.out.13)

Active response data for function evaluation 13:
Active set vector = { 2 2 2 }
 [-2.6455558611e-01 -9.8086106593e-02] obj_fn gradient
 [1.1911854091e+00 -5.0000000000e-01] nln_con1 gradient
 [0.0000000000e+00 1.4189513490e+00] nln_con2 gradient

Begin Function Evaluation 14

Parameters for function evaluation 14:
 5.9371257075e-01 x1
 7.0499649858e-01 x2

(text_book text_book.in.14 text_book.out.14)

Active response data for function evaluation 14:
Active set vector = { 1 1 1 }
 3.4821641822e-02 obj_fn
 -3.6326234263e-06 nln_con1
 -2.9799369899e-03 nln_con2

Begin Function Evaluation 15

Parameters for function evaluation 15:
 5.9408859751e-01 x1
 7.0589233377e-01 x2

(text_book text_book.in.15 text_book.out.15)

Active response data for function evaluation 15:
Active set vector = { 1 1 1 }
 3.4629329912e-02 obj_fn
 -4.9051936012e-06 nln_con1
 -1.7160131247e-03 nln_con2

Begin Function Evaluation 16

Parameters for function evaluation 16:
 5.9442052455e-01 x1
 7.0668310706e-01 x2

(text_book text_book.in.16 text_book.out.16)

Active response data for function evaluation 16:
Active set vector = { 1 1 1 }
 3.4460496673e-02 obj_fn
 -5.7935237028e-06 nln_con1
 -5.9898619602e-04 nln_con2

 OBJ = 3.44605E-02

 DECISION VARIABLES (X-VECTOR)
Example Problems Textbook Example - Results 199

 1) 5.94421E-01 7.06683E-01

 CONSTRAINT VALUES (G-VECTOR)
 1) -5.79352E-06 -5.98986E-04

 GMAX = -5.7935E-06

 -- BEGIN SQP ITERATION 5

Begin Function Evaluation 17

Parameters for function evaluation 17:
 5.9442052455e-01 x1
 7.0668310706e-01 x2

(text_book text_book.in.17 text_book.out.17)

Active response data for function evaluation 17:
Active set vector = { 2 2 2 }
 [-2.6686271425e-01 -1.0094184051e-01] obj_fn gradient
 [1.1888410491e+00 -5.0000000000e-01] nln_con1 gradient
 [0.0000000000e+00 1.4133662141e+00] nln_con2 gradient

 Q.P. SUB-PROBLEM GAVE NULL SEARCH DIRECTION. CONVERGENCE ASSUMED.

 -- OPTIMIZATION IS COMPLETE

 NUMBER OF CONSTRAINED MINIMIZATIONS = 5

 CONSTRAINT TOLERANCE, CT =-3.00000E-02

 THERE ARE 2 ACTIVE CONSTRAINTS AND 0 VIOLATED CONSTRAINTS
 CONSTRAINT NUMBERS
 1 2

 THERE ARE 0 ACTIVE SIDE CONSTRAINTS

 TERMINATION CRITERIA

 MAXIMUM S-VECTOR COMPONENT = 0.00000E+00 IS LESS THAN 1.00000E-04

 -- OPTIMIZATION RESULTS

 OBJECTIVE, F(X) = 3.44605E-02

 DECISION VARIABLES, X

 ID XL X XU
 1 5.00000E-01 5.94421E-01 5.80000E+00
 2 -2.90000E+00 7.06683E-01 2.90000E+00

 CONSTRAINTS, G(X)

 1) -5.79352E-06 -5.98986E-04

 FUNCTION CALLS = 12

 GRADIENT CALLS = 5

<<<<< Single method iteration completed.
<<<<< Function evaluation summary: 17 total (16 new, 1 duplicate)
Example Problems Textbook Example - Results 200

on
<<<<< Best design parameters =
 5.9442052455e-01 x1
 7.0668310706e-01 x2
<<<<< Best objective function =
 3.4460496673e-02
<<<<< Best constraint values =
 -5.7935237028e-06
 -5.9898619602e-04
Run time from MPI_Init to MPI_Finalize is 2.3499540000e+00 seconds

Least Squares

The solution for the least squares problem is:
x1 = 0.602
x2 = 0.710

with the residual functions equal to
f* = 0.0322
g1* = 0.00673
g2* = 0.00455

and a minimal sum of the squares of 0.00111.

This study requires selection ofnum_least_squares_terms = 3 in the responses
specification and selection of eitheroptpp_g_newton or optpp_bcg_newton in the
method specification. Theoptpp_bcg_newton method navigates to the least squares soluti
in 5 function and gradient calls. This output is shown below:

MPI initialized with 1 processors.
Writing new restart file dakota.rst
Constructing Single Method Strategy...
no method_pointer: last specifications parsed will be used
methodName = optpp_bcg_newton
gradientType = analytic
hessianType = none
Running MPI executable in serial mode.
Running Single Method Strategy...

Begin Function Evaluation 1

Parameters for function evaluation 1:
 9.0000000000e-01 x1
 1.1000000000e+00 x2

(text_book text_book.in.1 text_book.out.1)

Active response data for function evaluation 1:
Active set vector = { 3 3 3 }
 2.0000000000e-04 least_sq_term1
 2.6000000000e-01 least_sq_term2
 7.1000000000e-01 least_sq_term3
 [-4.0000000000e-03 4.0000000000e-03] least_sq_term1 gradient
 [1.8000000000e+00 -5.0000000000e-01] least_sq_term2 gradient
 [0.0000000000e+00 2.2000000000e+00] least_sq_term3 gradient

 nlf2_evaluator_gn results: objective fn. =
 5.7170004000e-01
 nlf2_evaluator_gn results: objective fn. gradient =
 [9.3599840000e-01 2.8640016000e+00]
 nlf2_evaluator_gn results: objective fn. Hessian =
[[6.4800320000e+00 -1.8000320000e+00
Example Problems Textbook Example - Results 201

 -1.8000320000e+00 1.0180032000e+01]]

Begin Function Evaluation 2

Parameters for function evaluation 2:
 6.6590894007e-01 x1
 7.7727283167e-01 x2

(text_book text_book.in.2 text_book.out.2)

Active response data for function evaluation 2:
Active set vector = { 3 3 3 }
 1.4919211444e-02 least_sq_term1
 5.4798300630e-02 least_sq_term2
 1.0415305485e-01 least_sq_term3
 [-1.4916074862e-01 -4.4195655359e-02] least_sq_term1 gradient
 [1.3318178801e+00 -5.0000000000e-01] least_sq_term2 gradient
 [0.0000000000e+00 1.5545456633e+00] least_sq_term3 gradient

 nlf2_evaluator_gn results: objective fn. =
 1.4073295457e-02
 nlf2_evaluator_gn results: objective fn. gradient =
 [1.4151199166e-01 2.6770433019e-01]
 nlf2_evaluator_gn results: objective fn. Hessian =
[[3.5919755894e+00 -1.3186333660e+00
 -1.3186333660e+00 5.3371309505e+00]]

Begin Function Evaluation 3

Parameters for function evaluation 3:
 6.0233226286e-01 x1
 7.1140623577e-01 x2

(text_book text_book.in.3 text_book.out.3)

Active response data for function evaluation 3:
Active set vector = { 3 3 3 }
 3.1944760199e-02 least_sq_term1
 7.1010369970e-03 least_sq_term2
 6.0988322924e-03 least_sq_term3
 [-2.5154811392e-01 -9.6143697434e-02] least_sq_term1 gradient
 [1.2046645257e+00 -5.0000000000e-01] least_sq_term2 gradient
 [0.0000000000e+00 1.4228124715e+00] least_sq_term3 gradient

 nlf2_evaluator_gn results: objective fn. =
 1.1080881859e-03
 nlf2_evaluator_gn results: objective fn. gradient =
 [1.0374463766e-03 4.1113775791e-03]
 nlf2_evaluator_gn results: objective fn. Hessian =
[[3.0289861462e+00 -1.1562949942e+00
 -1.1562949942e+00 4.5672778792e+00]]

Begin Function Evaluation 4

Parameters for function evaluation 4:
 6.0157271127e-01 x1
 7.1031375941e-01 x2

(text_book text_book.in.4 text_book.out.4)

Active response data for function evaluation 4:
Active set vector = { 3 3 3 }
 3.2242004707e-02 least_sq_term1
 6.7328472397e-03 least_sq_term2
Example Problems Textbook Example - Results 202

 4.5456368072e-03 least_sq_term3
 [-2.5299225122e-01 -9.7239696468e-02] least_sq_term1 gradient
 [1.2031454225e+00 -5.0000000000e-01] least_sq_term2 gradient
 [0.0000000000e+00 1.4206275188e+00] least_sq_term3 gradient

 nlf2_evaluator_gn results: objective fn. =
 1.1055409135e-03
 nlf2_evaluator_gn results: objective fn. gradient =
 [-1.1276603567e-04 -8.7939264600e-05]
 nlf2_evaluator_gn results: objective fn. Hessian =
[[3.0231279737e+00 -1.1539436431e+00
 -1.1539436431e+00 4.5552762115e+00]]

Begin Function Evaluation 5

Parameters for function evaluation 5:
 6.0162216282e-01 x1
 7.1034559141e-01 x2

(text_book text_book.in.5 text_book.out.5)

Active response data for function evaluation 5:
Active set vector = { 3 3 3 }
 3.2226401354e-02 least_sq_term1
 6.7764310912e-03 least_sq_term2
 4.5908592356e-03 least_sq_term3
 [-2.5289806109e-01 -9.7207644612e-02] least_sq_term1 gradient
 [1.2032443256e+00 -5.0000000000e-01] least_sq_term2 gradient
 [0.0000000000e+00 1.4206911828e+00] least_sq_term3 gradient

 nlf2_evaluator_gn results: objective fn. =
 1.1055369511e-03
 nlf2_evaluator_gn results: objective fn. gradient =
 [7.4156799421e-06 2.6502438991e-06]
 nlf2_evaluator_gn results: objective fn. Hessian =
[[3.0235086728e+00 -1.1540770759e+00
 -1.1540770759e+00 4.5556255261e+00]]

<<<<< Single method iteration completed.
<<<<< Function evaluation summary: 5 total (5 new, 0 duplicate)
<<<<< Best design parameters =
 6.0162216282e-01 x1
 7.1034559141e-01 x2
<<<<< Best objective function =
 1.1055369511e-03
Run time from MPI_Init to MPI_Finalize is 9.5173000000e-01 seconds
Example Problems Textbook Example - Results 203

wn

asting

l

) for
set

d

imizer
Rosenbrock Example
Rosenbrock Problem Formulation on page 204Methods on page 204Results on page 205

Rosenbrock Problem Formulation

The Rosenbrock function (see [Gill, P.E., Murray, W., and Wright, M.H., 1981]) is a well kno
benchmark problem for optimization algorithms. Its formulation can be stated as

minimize

(14)

This example problem may also be used to exercise least squares solution methods by rec
the problem formulation into:

minimize

(15)

where

(16)

and

(17)

are residual terms. In this case (unlike the least squares modification in Textbook Problem
Formulation on page 192), the 2 problem formulations are equivalent and will have identica
solutions.

Methods

In theDakota/test directory, therosenbrock executable (compiled from
rosenbrock.C) returns an objective function as computed from Eq. (14) for use with
optimization methods. Therosenbrock_ls executable (compiled from
rosenbrock_ls.C) returns two least squares terms as computed from Eqs. (16) and (17
use with least squares iterators. Both executables return analytic gradients of the function
(gradient of the objective function inrosenbrock , gradients of the least squares residuals in
rosenbrock_ls) with respect to the design variables. Thedakota_rosenbrock.in
input file is used to solve both problems by toggling settings in the interface, responses, an
method specifications. To run the optimization solution, select’rosenbrock’ as the
analysis_driver in the interface specification, selectnum_objective_functions to
be 1 in the responses specification, and select an unconstrained or bound-constrained opt
in the method specification (e.g.,dot_bfgs , optpp_bcq_newton), e.g.:

f 100 x 2 x 1
2

–()
2

1 x– 1()2
+=

f f 1()2 f 2()2+=

f 1 10 x 2 x 1
2

–()=

f 2 1 x 1–=
Example Problems Rosenbrock Example - Rosenbrock Problem Formulation 204

 is:

re
good
interface, \
application system, \
 analysis_driver = ’rosenbrock’

variables, \
continuous_design = 2 \
 cdv_initial_point 0.8 0.7 \
 cdv_lower_bounds -2.0 -2.0 \
 cdv_upper_bounds 2.0 2.0 \
 cdv_descriptor ’x1’ ’x2’

responses, \
num_objective_functions = 1 \
analytic_gradients \
no_hessians

method, \
optpp_bcq_newton, \
 max_iterations = 500 \
 convergence_tolerance = 1e-10

To run the least squares solution, select’rosenbrock_ls’ as theanalysis_driver in
the interface specification, selectnum_least_squares_terms to be 2 in the responses
specification, and select a Gauss-Newton iterator in the method specification (i.e.,
optpp_g_newton or optpp_bcg_newton), e.g.:

interface, \
application system, \
 analysis_driver = ’rosenbrock_ls’

variables, \
continuous_design = 2 \
 cdv_initial_point 0.8 0.7 \
 cdv_lower_bounds -2.0 -2.0 \
 cdv_upper_bounds 2.0 2.0 \
 cdv_descriptor ’x1’ ’x2’

responses, \
num_least_squares_terms = 2 \
analytic_gradients \
no_hessians

method, \
optpp_bcg_newton, \
 max_iterations = 500 \
 convergence_tolerance = 1e-10

Results

The optimal solution, solved either as a least squares problem or an optimization problem,
x1 = 1.0
x2 = 1.0

with
f* = 0.0

In comparing the two approaches, one would expect the Gauss-Newton approach to be mo
efficient since it exploits the special-structure of a least squares objective function. From a
initial guess, this expected behavior is observed. Starting fromcdv_initial_point =
0.8, 0.7 , theoptpp_bcg_newton method converges in only 3 function and gradient
evaluations while theoptpp_bcq_newton method requires 14 function and gradient
Example Problems Rosenbrock Example - Results 205

 for

the
evaluations to achieve similar accuracy. Starting from a poorer initial guess (e.g.,
cdv_initial_point = -1.2, 1.0 as specified inDakota/test/
dakota_rosenbrock.in), the trend is less obvious since both methods spend several
evaluations finding the vicinity of the minimum (total function and gradient evaluations = 24
optpp_bcq_newton and 29 foroptpp_bcg_newton). However, once the vicinity is
located, convergence is much more rapid with the Gauss-Newton approach (11 orders of
magnitude reduction in the objective function in 1 function and gradient evaluation) than with
quasi-Newton approach (12 orders of magnitude reduction in the objective function in 10
function and gradient evaluations).

Shown below is the DAKOTA output for theoptpp_bcg_newton method starting from
cdv_initial_point = 0.8, 0.7 :

MPI initialized with 1 processors.
Writing new restart file dakota.rst
Constructing Single Method Strategy...
no method_pointer: last specifications parsed will be used
methodName = optpp_bcg_newton
gradientType = analytic
hessianType = none
Running MPI executable in serial mode.
Running Single Method Strategy...

Begin Function Evaluation 1

Parameters for function evaluation 1:
 8.0000000000e-01 x1
 7.0000000000e-01 x2

(rosenbrock_ls /var/tmp/aaaa000Sg /var/tmp/baaa000Sg)
Removing /var/tmp/aaaa000Sg and /var/tmp/baaa000Sg

Active response data for function evaluation 1:
Active set vector = { 3 3 }
 6.0000000000e-01 least_sq_term1
 2.0000000000e-01 least_sq_term2
 [-1.6000000000e+01 1.0000000000e+01] least_sq_term1 gradient
 [-1.0000000000e+00 0.0000000000e+00] least_sq_term2 gradient

 nlf2_evaluator_gn results: objective fn. =
 4.0000000000e-01
 nlf2_evaluator_gn results: objective fn. gradient =
 [-1.9600000000e+01 1.2000000000e+01]
 nlf2_evaluator_gn results: objective fn. Hessian =
[[5.1400000000e+02 -3.2000000000e+02
 -3.2000000000e+02 2.0000000000e+02]]

Begin Function Evaluation 2

Parameters for function evaluation 2:
 9.9999528206e-01 x1
 9.5999243139e-01 x2

(rosenbrock_ls /var/tmp/caaa000Sg /var/tmp/daaa000Sg)
Removing /var/tmp/caaa000Sg and /var/tmp/daaa000Sg

Active response data for function evaluation 2:
Active set vector = { 3 3 }
 -3.9998132752e-01 least_sq_term1
 4.7179400000e-06 least_sq_term2
 [-1.9999905641e+01 1.0000000000e+01] least_sq_term1 gradient
Example Problems Rosenbrock Example - Results 206

 [-1.0000000000e+00 0.0000000000e+00] least_sq_term2 gradient

 nlf2_evaluator_gn results: objective fn. =
 1.5998506239e-01
 nlf2_evaluator_gn results: objective fn. gradient =
 [1.5999168181e+01 -7.9996265504e+00]
 nlf2_evaluator_gn results: objective fn. Hessian =
[[8.0199245130e+02 -3.9999811282e+02
 -3.9999811282e+02 2.0000000000e+02]]

Begin Function Evaluation 3

Parameters for function evaluation 3:
 9.9999904378e-01 x1
 9.9999808275e-01 x2

(rosenbrock_ls /var/tmp/eaaa000Sg /var/tmp/faaa000Sg)
Removing /var/tmp/eaaa000Sg and /var/tmp/faaa000Sg

Active response data for function evaluation 3:
Active set vector = { 3 3 }
 -4.8109144446e-08 least_sq_term1
 9.5621999996e-07 least_sq_term2
 [-1.9999980876e+01 1.0000000000e+01] least_sq_term1 gradient
 [-1.0000000000e+00 0.0000000000e+00] least_sq_term2 gradient

 nlf2_evaluator_gn results: objective fn. =
 9.1667117810e-13
 nlf2_evaluator_gn results: objective fn. gradient =
 [1.1923937841e-08 -9.6218288892e-07]
 nlf2_evaluator_gn results: objective fn. Hessian =
[[8.0199847008e+02 -3.9999961752e+02
 -3.9999961752e+02 2.0000000000e+02]]

<<<<< Single method iteration completed.
<<<<< Function evaluation summary: 3 total (3 new, 0 duplicate)
<<<<< Best design parameters =
 9.9999904378e-01 x1
 9.9999808275e-01 x2
<<<<< Best objective function =
 9.1667117810e-13
Run time from MPI_Init to MPI_Finalize is 7.8900400000e-01 seconds
Example Problems Rosenbrock Example - Results 207

gine

ot
ycle
ytically
Cylinder Head Example
Cylinder Head Problem Formulation on page 208Methods on page 209Optimization Results on page 209

Cylinder Head Problem Formulation

The cylinder head example problem arose as a simple demonstration problem for the
Technologies Enabling Agile Manufacturing (TEAM) project. Its formulation is stated as

minimize

(18)

subject to

(19)

(20)

(21)

(22)

(23)

This formulation seeks to simultaneously maximize normalized engine horsepower and en
warranty over variables of valve intake diameter (dintake) in inches and overall head flatness

(flatness) in thousandths of an inch subject to constraints that the maximum stress cann
exceed half of yield, that warranty must be at least 100000 miles, and that manufacturing c
time must be less than 60 seconds. The objective function and constraints are related anal
to the design variables according to the following simple expressions:

(24)

(25)

(26)

(27)

(28)

f 1 horsepower
250

--------------------------------------- warranty
100000

-------------------------------+ 
 –=

g1 σmax 0.5σyield–= 0≤

g2 100000 warranty–= 0≤

g3 time cycle 60–= 0≤

1.5 d≤ intake 2.164≤

0.0 flatness≤ 4.0≤

warranty 100000 15000 4 flatness–()+=

time cycle 45 4.5 4 flatness–()1.5
+=

horsepower 250 200
dintake

1.8333
--------------------- 1– 

 +=

σmax 750 1

t wall()2.5
--------------------------+=

t wall offset intake offset exhaust–
dintake dexhaust+()

2
--–=
Example Problems Cylinder Head Example - Cylinder Head Problem Formulation 208

data
er
e
cifies
y

where the constants in Eqns. (19) and (28) assume the following values:σyield = 3000 ,

offset intake = 3.25 , offset exhaust = 1.34 , anddexhaust = 1.556 .

Methods

In theDakota/test directory, thedakota_cyl_head.in input file is used to execute the
cylinder head example. This file is shown below:

interface, \
application system, \
 asynchronous \
 analysis_driver= ‘cyl_head’

variables, \
continuous_design = 2 \
 cdv_initial_point 1.8 1.0\
 cdv_upper_bounds 2.164 4.0\
 cdv_lower_bounds 1.5 0.0\
 cdv_descriptor ‘intake_dia’ ‘flatness’

responses, \
num_objective_functions = 1 \
num_nonlinear_constraints = 3 \
numerical_gradients \
 method_source dakota \
 interval_type central \
 fd_step_size = 1.e-4 \
no_hessians

method, \
 npsol_sqp \

 convergence_tolerance = 1.e-8 \
linear_constraints = 1. 1. -3.7\

 output verbose

The interface keyword specifies use of thecyl_head executable (compiled fromDakota/
test/cyl_head.C) as the simulator. The variables and responses keywords specify the
sets to be used in the iteration by providing the initial point, descriptors, and upper and low
bounds for two continuous design variables and by specifying the presence of one objectiv
function, three constraints, and analytic gradients in the problem. The method keyword spe
the use of thenpsol_sqp method to solve this constrained optimization problem. No strateg
keyword is specified, so the defaultsingle_method strategy is used.

Optimization Results

The solution for the constrained optimization problem is:
intake_dia = 2.122
flatness = 1.769

with
f* = -2.461
g1* = 0.0 (active)
g2* = -0.3347 (inactive)
Example Problems Cylinder Head Example - Methods 209

g2* = 0.0 (active)

which corresponds to the following optimal response quantities:
warranty = 133472
cycle_time = 60
horse_power = 281.579
max_stress = 1500

The DAKOTA output follows:
MPI initialized with 1 processors.
Writing new restart file dakota.rst
Constructing Single Method Strategy...
no method_pointer: last specifications parsed will be used
methodName = npsol_sqp
gradientType = analytic
hessianType = none

NPSOL option settings:

Verify Level = -1
Major Print Level = 20
Function Precision = 1e-10
Linesearch Tolerance = 0.9
Major Iteration Limit = 100
Optimality Tolerance = 1e-08
NOTE: NPSOL’s convergence tolerance is not a relative tolerance.
 See pp. 21-22 of NPSOL manual for description.
Derivative Level = 3
Running MPI executable in serial mode.
Running Single Method Strategy...

 NPSOL --- Version 4.06-2 Nov 1992
 ==

Begin Function Evaluation 1

Parameters for function evaluation 1:
 1.8000000000e+00 intake_dia
 1.0000000000e+00 flatness

(cyl_head /var/tmp/aaaa0010M /var/tmp/baaa0010M)
In cyl_head evaluator:
warranty = 145000
cycle_time = 68.3827
wall_thickness = 0.232
horse_power = 246.399
max_stress = 788.573
Removing /var/tmp/aaaa0010M and /var/tmp/baaa0010M

Active response data for function evaluation 1:
Active set vector = { 3 3 3 3 }
 -2.4355973813e+00 obj_fn
 -4.7428486677e-01 nln_con1
 -4.5000000000e-01 nln_con2
 1.3971143170e-01 nln_con3
 [-4.3644298963e-01 1.5000000000e-01] obj_fn gradient
 [1.3855136438e-01 0.0000000000e+00] nln_con1 gradient
 [0.0000000000e+00 1.5000000000e-01] nln_con2 gradient
 [0.0000000000e+00 -1.9485571585e-01] nln_con3 gradient
Example Problems Cylinder Head Example - Optimization Results 210

 Maj Mnr Step Fun Merit function Violtn Norm gZ nZ Penalty Conv
 0 2 0.0E+00 1 -1.98878999E+00 3.9E-01 0.0E+00 0 4.6E+01 F TF

Begin Function Evaluation 2

Parameters for function evaluation 2:
 2.1640000000e+00 intake_dia
 1.7169994018e+00 flatness

(cyl_head /var/tmp/caaa0010M /var/tmp/daaa0010M)
In cyl_head evaluator:
warranty = 134245
cycle_time = 60.5229
wall_thickness = 0.05
horse_power = 286.116
max_stress = 2538.85
Removing /var/tmp/caaa0010M and /var/tmp/daaa0010M

Active response data for function evaluation 2:
Active set vector = { 3 3 3 3 }
 -2.4869127193e+00 obj_fn
 6.9256958800e-01 nln_con1
 -3.4245008973e-01 nln_con2
 8.7142207939e-03 nln_con3
 [-4.3644298963e-01 1.5000000000e-01] obj_fn gradient
 [2.9814239700e+01 0.0000000000e+00] nln_con1 gradient
 [0.0000000000e+00 1.5000000000e-01] nln_con2 gradient
 [0.0000000000e+00 -1.6998301774e-01] nln_con3 gradient

 1 1 1.0E+00 2 -2.46707673E+00 6.9E-01 0.0E+00 0 6.8E+00 F TF

Begin Function Evaluation 3

Parameters for function evaluation 3:
 2.1407705098e+00 intake_dia
 1.7682646453e+00 flatness

(cyl_head /var/tmp/eaaa0010M /var/tmp/faaa0010M)
In cyl_head evaluator:
warranty = 133476
cycle_time = 60.0029
wall_thickness = 0.0616147
horse_power = 283.581
max_stress = 1811.18
Removing /var/tmp/eaaa0010M and /var/tmp/faaa0010M

Active response data for function evaluation 3:
Active set vector = { 3 3 3 3 }
 -2.4690845846e+00 obj_fn
 2.0745219855e-01 nln_con1
 -3.3476030320e-01 nln_con2
 4.9104542814e-05 nln_con3
 [-4.3644298963e-01 1.5000000000e-01] obj_fn gradient
 [1.4352331520e+01 0.0000000000e+00] nln_con1 gradient
 [0.0000000000e+00 1.5000000000e-01] nln_con2 gradient
 [0.0000000000e+00 -1.6806368014e-01] nln_con3 gradient

Begin Function Evaluation 4

Parameters for function evaluation 4:
 2.1607040498e+00 intake_dia
 1.7242732458e+00 flatness

(cyl_head /var/tmp/gaaa0010M /var/tmp/haaa0010M)
In cyl_head evaluator:
warranty = 134136
Example Problems Cylinder Head Example - Optimization Results 211

cycle_time = 60.4487
wall_thickness = 0.051648
horse_power = 285.756
max_stress = 2399.55
Removing /var/tmp/gaaa0010M and /var/tmp/haaa0010M

Active response data for function evaluation 4:
Active set vector = { 3 3 3 3 }
 -2.4843831483e+00 obj_fn
 5.9970320968e-01 nln_con1
 -3.4135901313e-01 nln_con2
 7.4787762078e-03 nln_con3
 [-4.3644298963e-01 1.5000000000e-01] obj_fn gradient
 [2.6615351511e+01 0.0000000000e+00] nln_con1 gradient
 [0.0000000000e+00 1.5000000000e-01] nln_con2 gradient
 [0.0000000000e+00 -1.6971201116e-01] nln_con3 gradient

 2 0 1.4E-01 4 -2.46179789E+00 6.0E-01 0.0E+00 0 6.8E+00 F TF

Begin Function Evaluation 5

Parameters for function evaluation 5:
 2.1381718203e+00 intake_dia
 1.7683406996e+00 flatness

(cyl_head /var/tmp/iaaa0010M /var/tmp/jaaa0010M)
In cyl_head evaluator:
warranty = 133475
cycle_time = 60.0022
wall_thickness = 0.0629141
horse_power = 283.298
max_stress = 1757.23
Removing /var/tmp/iaaa0010M and /var/tmp/jaaa0010M

Active response data for function evaluation 5:
Active set vector = { 3 3 3 3 }
 -2.4679389967e+00 obj_fn
 1.7148906598e-01 nln_con1
 -3.3474889506e-01 nln_con2
 3.6322686164e-05 nln_con3
 [-4.3644298963e-01 1.5000000000e-01] obj_fn gradient
 [1.3341388781e+01 0.0000000000e+00] nln_con1 gradient
 [0.0000000000e+00 1.5000000000e-01] nln_con2 gradient
 [0.0000000000e+00 -1.6806081643e-01] nln_con3 gradient

Begin Function Evaluation 6

Parameters for function evaluation 6:
 2.1523079940e+00 intake_dia
 1.7406938490e+00 flatness

(cyl_head /var/tmp/kaaa0010M /var/tmp/laaa0010M)
In cyl_head evaluator:
warranty = 133890
cycle_time = 60.2818
wall_thickness = 0.055846
horse_power = 284.84
max_stress = 2106.81
Removing /var/tmp/kaaa0010M and /var/tmp/laaa0010M

Active response data for function evaluation 6:
Active set vector = { 3 3 3 3 }
 -2.4782556582e+00 obj_fn
 4.0454151196e-01 nln_con1
 -3.3889592265e-01 nln_con2
 4.6970356970e-03 nln_con3
 [-4.3644298963e-01 1.5000000000e-01] obj_fn gradient
Example Problems Cylinder Head Example - Optimization Results 212

 [2.0246335086e+01 0.0000000000e+00] nln_con1 gradient
 [0.0000000000e+00 1.5000000000e-01] nln_con2 gradient
 [0.0000000000e+00 -1.6909862055e-01] nln_con3 gradient

 3 0 3.7E-01 6 -2.45857429E+00 4.0E-01 0.0E+00 0 6.8E+00 F TF

Begin Function Evaluation 7

Parameters for function evaluation 7:
 2.1323270192e+00 intake_dia
 1.7684707504e+00 flatness

(cyl_head /var/tmp/maaa0010M /var/tmp/naaa0010M)
In cyl_head evaluator:
warranty = 133473
cycle_time = 60.0009
wall_thickness = 0.0658365
horse_power = 282.66
max_stress = 1649.15
Removing /var/tmp/maaa0010M and /var/tmp/naaa0010M

Active response data for function evaluation 7:
Active set vector = { 3 3 3 3 }
 -2.4653685666e+00 obj_fn
 9.9434951763e-02 nln_con1
 -3.3472938744e-01 nln_con2
 1.4466560964e-05 nln_con3
 [-4.3644298963e-01 1.5000000000e-01] obj_fn gradient
 [1.1381130512e+01 0.0000000000e+00] nln_con1 gradient
 [0.0000000000e+00 1.5000000000e-01] nln_con2 gradient
 [0.0000000000e+00 -1.6805591946e-01] nln_con3 gradient

 4 0 1.0E+00 7 -2.46038884E+00 9.9E-02 0.0E+00 0 6.8E+00 F TF

Begin Function Evaluation 8

Parameters for function evaluation 8:
 2.1235901936e+00 intake_dia
 1.7685568322e+00 flatness

(cyl_head /var/tmp/oaaa0010M /var/tmp/paaa0010M)
In cyl_head evaluator:
warranty = 133472
cycle_time = 60
wall_thickness = 0.0702049
horse_power = 281.707
max_stress = 1515.74
Removing /var/tmp/oaaa0010M and /var/tmp/paaa0010M

Active response data for function evaluation 8:
Active set vector = { 3 3 3 3 }
 -2.4615425280e+00 obj_fn
 1.0493396662e-02 nln_con1
 -3.3471647517e-01 nln_con2
 1.4443046759e-10 nln_con3
 [-4.3644298963e-01 1.5000000000e-01] obj_fn gradient
 [9.0893472783e+00 0.0000000000e+00] nln_con1 gradient
 [0.0000000000e+00 1.5000000000e-01] nln_con2 gradient
 [0.0000000000e+00 -1.6805267803e-01] nln_con3 gradient

 Maj Mnr Step Fun Merit function Violtn Norm gZ nZ Penalty Conv
 5 0 1.0E+00 8 -2.46101307E+00 1.0E-02 0.0E+00 0 6.8E+00 F TF

Begin Function Evaluation 9
Example Problems Cylinder Head Example - Optimization Results 213

Parameters for function evaluation 9:
 2.1224357217e+00 intake_dia
 1.7685568330e+00 flatness

(cyl_head /var/tmp/qaaa0010M /var/tmp/raaa0010M)
In cyl_head evaluator:
warranty = 133472
cycle_time = 60
wall_thickness = 0.0707821
horse_power = 281.581
max_stress = 1500.22
Removing /var/tmp/qaaa0010M and /var/tmp/raaa0010M

Active response data for function evaluation 9:
Active set vector = { 3 3 3 3 }
 -2.4610386667e+00 obj_fn
 1.4914647635e-04 nln_con1
 -3.3471647505e-01 nln_con2
 9.9882324633e-12 nln_con3
 [-4.3644298963e-01 1.5000000000e-01] obj_fn gradient
 [8.8325450545e+00 0.0000000000e+00] nln_con1 gradient
 [0.0000000000e+00 1.5000000000e-01] nln_con2 gradient
 [0.0000000000e+00 -1.6805267800e-01] nln_con3 gradient

 6 0 1.0E+00 9 -2.46103129E+00 1.5E-04 0.0E+00 0 6.8E+00 F TF

Begin Function Evaluation 10

Parameters for function evaluation 10:
 2.1224188357e+00 intake_dia
 1.7685568331e+00 flatness

(cyl_head /var/tmp/saaa0010M /var/tmp/taaa0010M)
In cyl_head evaluator:
warranty = 133472
cycle_time = 60
wall_thickness = 0.0707906
horse_power = 281.579
max_stress = 1500
Removing /var/tmp/saaa0010M and /var/tmp/taaa0010M

Active response data for function evaluation 10:
Active set vector = { 3 3 3 3 }
 -2.4610312969e+00 obj_fn
 3.1248197141e-08 nln_con1
 -3.3471647503e-01 nln_con2
 -6.8171024381e-12 nln_con3
 [-4.3644298963e-01 1.5000000000e-01] obj_fn gradient
 [8.8288585865e+00 0.0000000000e+00] nln_con1 gradient
 [0.0000000000e+00 1.5000000000e-01] nln_con2 gradient
 [0.0000000000e+00 -1.6805267799e-01] nln_con3 gradient

 7 0 1.0E+00 10 -2.46103130E+00 3.1E-08 0.0E+00 0 6.8E+00 T TF

Begin Function Evaluation 11

Parameters for function evaluation 11:
 2.1224188321e+00 intake_dia
 1.7685568331e+00 flatness

(cyl_head /var/tmp/uaaa0010M /var/tmp/vaaa0010M)
In cyl_head evaluator:
warranty = 133472
cycle_time = 60
wall_thickness = 0.0707906
horse_power = 281.579
max_stress = 1500
Example Problems Cylinder Head Example - Optimization Results 214

Removing /var/tmp/uaaa0010M and /var/tmp/vaaa0010M

Active response data for function evaluation 11:
Active set vector = { 3 3 3 3 }
 -2.4610312954e+00 obj_fn
 -5.3569115810e-10 nln_con1
 -3.3471647503e-01 nln_con2
 -6.8171024381e-12 nln_con3
 [-4.3644298963e-01 1.5000000000e-01] obj_fn gradient
 [8.8288578008e+00 0.0000000000e+00] nln_con1 gradient
 [0.0000000000e+00 1.5000000000e-01] nln_con2 gradient
 [0.0000000000e+00 -1.6805267799e-01] nln_con3 gradient

 8 0 1.0E+00 11 -2.46103130E+00 5.4E-10 0.0E+00 0 6.8E+00 T TT

 Exit NPSOL - Optimal solution found.

 Final nonlinear objective value = -2.461031

NPSOL exits with INFORM code = 0 (see p. 8 of NPSOL manual)

NOTE: see Fortran device 9 file (fort.9 or ftn09)
 for complete NPSOL iteration history.

<<<<< Single method iteration completed.
<<<<< Function evaluation summary: 11 total (11 new, 0 duplicate)
<<<<< Best design parameters =
 2.1224188321e+00 intake_dia
 1.7685568331e+00 flatness
<<<<< Best objective function =
 -2.4610312954e+00
<<<<< Best constraint values =
 -5.3569115810e-10
 -3.3471647503e-01
 -6.8171024381e-12
Run time from MPI_Init to MPI_Finalize is 1.6473130000e+00 seconds
Example Problems Cylinder Head Example - Optimization Results 215

f

o
g

e
t and
e.
Engineering Applications
Transportation Cask Example on page 216GOMA/EXODUS Application Example on page 216Additional References on page 242

Transportation Cask Example

In this example, use is made of C-shell scripting to coordinate pre-processing, invocation o
analyses, and post-processing.

Work in progress

Alternate with workdir tagging: radar load spreader plate

GOMA/EXODUS Application Example

This tutorial is designed to give an experienced GOMA/EXODUS jockey an introduction int
tying the DAKOTA iterator toolkit to the GOMA simulation code. In addition to understandin
GOMA and the EXODUS file format, the user is assumed to have an understanding of a
programming language such as C or FORTRAN. Although many of the examples will be
presented in C, the programs can just as easily be written in FORTRAN.

Standard text_book example

Problem formulation:

The problem to be solved in this portion of the tutorial is the text_book example:

(29)

subject to simple bounds on the variables: x1 and x2 range between -10 and +10.

Dakota_sample.in problem description file:

Sections are delimited by newline characters. Therefore, to continue a section onto multipl
lines, the back-slash character is needed to escape the newline. Input is order-independen
white-space insensitive. Keywords may be abbreviated so long as the abbreviation is uniqu
Comments are preceded by #.The definitive resource for input grammar isDakota/src/
dakota.input.spec .

DAKOTA INPUT FILE - dakota_textbook.in
Interface section specification

f x 1 1–()4
x 2 1–()4

g1

+

x 1
2 x 2

2
------– 0

g2

≤

x 2
2

0.5– 0≤

=

=

=

Example Problems Engineering Applications - Transportation Cask Example 216

NOTES: Interfaces are 1 of 3 main types: application interfaces are used
for interfacing with simulation codes, approximation interfaces use
inexpensive design space approximations in place of expensive
simulations, and test interfaces use linked-in test functions for
algorithm testing purposes (to eliminate system call overhead).
Application interfaces can be further categorized into system and
direct types. The system type uses system calls to invoke the
simulation, while the direct type uses the same constructs as the test
interface for linked-in simulation codes. Both application interface
types use analysis_driver, input_filter, and output_filter
specifications. The system type additionally uses parameters_file,
results_file, analysis_usage, file_tag, and file_save specifications.
The analysis_driver provides the name of the analysis executable,
driver script, or linked module; the input_filter and output_filter
provide pre- and post-processing for the analysis in the procedure of
mapping parameters into responses (default = NO_FILTER); the
parameters_file and results_file are data files which Dakota creates
and reads, respectively, in the system call case (default = Unix temp
files); analysis_usage defines nontrivial command syntax (default =
standard syntax), file_tag controls the unique tagging of data files
with function evaluation number (default = no tagging), and file_save
controls whether or not file cleanup operations are performed (default
= data files are removed when no longer in use). Most settings are
optional with meaningful defaults as shown above. Refer to the
Interface Commands section in the User’s Instructions manual for
additional information.

interface,\
application system,\
 input_filter = ‘NO_FILTER’\
 output_filter = ‘NO_FILTER’\
 analysis_driver = ‘text_book’\
 parameters_file = ‘text_book.in’\
 results_file = ‘text_book.out’\
 analysis_usage = ‘DEFAULT’\
 file_tag\
 file_save

Variables specification
NOTES:A variables set can contain design, uncertain, and state variables.
Design variables are those variables which an optimizer adjusts in
order to locate an optimal design. Each of the n design parameters
can have an initial point, a lower bound, an upper bound, and a
descriptive tag. Uncertain variables are those variables which are
characterized by probability distributions. Each uncertain variable
specification can contain a distribution type, a mean, a standard
deviation, a lower bound, an upper bound, a histogram filename and a
descriptive tag. State variables are “other” variables which are to
be mapped through the interface. Each state variable specification
can have an initial state and a descriptor. State variables provide a
convenience mechanism for parameterizing additional model inputs, such
as mesh density, solver convergence tolerance and time step controls,
and will be used to enact model adaptivity in future strategy
developments.

variables,\
continuous_design = 2\
 cdv_initial_point 0.9 1.1\
 cdv_upper_bounds 5.8 2.9\
 cdv_lower_bounds 0.5 -2.9\
 cdv_descriptor ‘x1’ ‘x2’

Responses specification
NOTES: This specification implements a generalized Dakota data set by
specifying a set of functions and the types of gradients and hessians
for these functions. Optimization data sets require specification of
num_objective_functions, num_linear_constraints, and
num_nonlinear_constraints. Multiobjective opt. is not yet supported,
so num_objective_functions must be = 1. Uncertainty quantification
data sets are specified by num_response_functions. Nonlinear least
squares data sets are specified with num_least_squares_terms.
Gradient type specification may be no_gradients, analytic_gradients,
Example Problems Engineering Applications - GOMA/EXODUS Application Example 217

numerical_gradients or mixed_gradients:
> no_gradients is invalid with gradient-based opt. methods
> no_gradients or analytic_gradients are complete specifications
> if numerical_gradients, then:
>> method_source = vendor OR dakota
>> interval_type = forward OR cental
>> fd_step_size = <float>
are additional optional parameters in the specification.
> mixed_gradients uses id_numerical & id_analytic lists to specify
the gradient types for different function numbers. This capability
is not yet completely implemented within the Iterators.
Hessian type specification may currently be no_hessians or
analytic_hessians. The only optimizers to currently support
analytic_hessians are the OPT++ full Newton methods.

responses,\
num_objective_functions = 1\
num_linear_constraints = 0\
num_nonlinear_constraints = 2\
analytic_gradients\
no_hessians

Strategy specification
NOTES: Contains specifications for hybrid, SAO, and OUU strategies. The
single_method strategy is a “fall through” strategy, in that in only
invokes a single iterator. If no strategy specification appears, then
single_method is the default.

strategy,\
single_method

Method specification
NOTES: method can currently be dot_frcg, dot_mmfd, dot_bfgs, dot_slp,
dot_sqp, npsol_sqp, optpp_cg, optpp_q_newton, optpp_g_newton,
optpp_newton, optpp_fd_newton, optpp_ba_newton, optpp_baq_newton,
optpp_bc_newton, optpp_bcq_newton, optpp_bc_ellipsoid, optpp_pds,
optpp_test_new, sgopt_pga_real, sgopt_pga_int, sgopt_coord_ps,
sgopt_coord_sps, sgopt_solis_wets, sgopt_strat_mc, nond_probability,
nond_mean_value, or parameter_study. Most method control parameters
are optional with meaningful defaults, although sgopt_coord_ps,
sgopt_coord_sps, parameter_study, nond_probability, and
nond_mean_value have some required control parameters. Default values
for optional parameters are defined in the DataMethod class
constructor and are documented in the Method Commands section of the
User’s Instructions manual.

method,\
 dot_sqp,\

 max_iterations = 50,\
 convergence_tolerance = 1e-4\
 output verbose\
 optimization_type minimize

Simulator file text_book.C:

This simple application program reads the parameters and writes the responses directly;
therefore, the NO_FILTER option is be used. The output must be formatted based on the
DakotaResponse IO operators.

#include <iostream.h>
#include <iomanip.h>
#include <fstream.h>
#include <math.h>
#include <rw/cstring.h>

#ifdef SYMANTEC
#include <console.h>
#endif
Example Problems Engineering Applications - GOMA/EXODUS Application Example 218

double eval(const double* x, int len);
int main(int argc, char** argv)
{
#ifdef SYMANTEC
 argc = ccommand(&argv);

 for(int num=0; num<argc; num++) {
 cout << argv[num] << “ “;
 }
 cout << ‘\n’;
#endif

 ifstream fin(argv[1]);
 ofstream fout(argv[2]);

 // Get the first line and use info for array allocation
 int num_vars, num_fns;
 RWCString vars_text, fns_text;
 fin >> num_vars >> vars_text >> num_fns >> fns_text;

 // Get the parameter vector and ignore the labels
 //vector<double> x(num_vars);
 double* x = new double [num_vars];
 int i;
 for(i=0; i<num_vars; i++) {
 fin >> x[i];
 fin.ignore(256, ‘\n’);
 }

 // Get the ASV vector and ignore the labels
 int* ASV = new int [num_fns];
 for(i=0; i<num_fns; i++) {
 fin >> ASV[i];
 fin.ignore(256, ‘\n’);
 }

 // Compute the results and output them directly to argv[2] (the NO_FILTER
 // option is used). Response tags are now optional; output them for ease
 // of results readability.
 fout.precision(10);
 fout.setf(ios::scientific);
 fout.setf(ios::right);
 // **** f:
 if (ASV[0]==1 || ASV[0]==3 || ASV[0]==5 || ASV[0]==7)
 fout << “ “ << eval(x, num_vars) << “ f\n”;

 // **** c1:
 if (num_fns>1) {
 if (ASV[1]==1 || ASV[1]==3 || ASV[1]==5 || ASV[1]==7)
 fout << “ “ << (x[0]*x[0] - 0.5*x[1]) << “ c1\n”;
 }

 // **** c2:
 if (num_fns>2) {
 if (ASV[2]==1 || ASV[2]==3 || ASV[2]==5 || ASV[2]==7)
 fout << “ “ << (x[1]*x[1] - 0.5) << “ c2\n”;
 }

 // **** df/dx:
 if (ASV[0]==2 || ASV[0]==3 || ASV[0]==6 || ASV[0]==7) {
 fout << “[“;
 for (i=0; i<num_vars; i++)
 fout << 4.*pow(x[i]-1,3) << “ “;
 fout << “]\n”;
 }

 // **** dc1/dx:
 if (num_fns>1) {
 if (ASV[1]==2 || ASV[1]==3 || ASV[1]==6 || ASV[1]==7) {
 fout << “[“ << 2.*x[0] << “ “ << -0.5;
 for (i=3; i<=num_vars; i++)
 fout << “ “ << 0.0;
Example Problems Engineering Applications - GOMA/EXODUS Application Example 219

 fout << “]\n”;
 }
 }

 // **** dc2/dx:
 if (num_fns>2) {
 if (ASV[2]==2 || ASV[2]==3 || ASV[2]==6 || ASV[2]==7) {
 fout << “[“ << 0.0 << “ “ << 2.*x[1];
 for (i=3; i<=num_vars; i++)
 fout << “ “ << 0.0;
 fout << “]\n”;
 }
 }

 // **** d^2f/dx^2: (full Newton unconstrained opt.)
 if (ASV[0]>=4) {
 fout << “[[“;
 for (i=0; i<num_vars; i++)
 for (int j=0; j<num_vars; j++)
 if (i==j)
 fout << 12.*pow(x[i]-1,2) << “ “;
 else
 fout << 0. << “ “;
 fout << “]]\n”;
 }

 // **** d^2c1/dx^2: (ParamStudy testing of multiple Hessian matrices)
 if (num_fns>1) {
 if (ASV[1]>=4) {
 fout << “[[“;
 for (i=0; i<num_vars; i++)
 for (int j=0; j<num_vars; j++)
 if (i==0 && j==0)
 fout << 2. << “ “;
 else
 fout << 0. << “ “;
 fout << “]]\n”;
 }
 }

 // **** d^2c2/dx^2: (ParamStudy testing of multiple Hessian matrices)
 if (num_fns>2) {
 if (ASV[2]>=4) {
 fout << “[[“;
 for (i=0; i<num_vars; i++)
 for (int j=0; j<num_vars; j++)
 if (i==1 && j == 1)
 fout << 2. << “ “;
 else
 fout << 0. << “ “;
 fout << “]]\n”;
 }
 }

 fout << flush;
 delete [] x;
 delete [] ASV;

 return 0;
}

//double eval(const vector<double>& x)
double eval(const double* x, int len)
{
 double value=0;

 for(int i=len; i--;) {
 value += pow(x[i]-1, 4);
 }

 return value;
}

Example Problems Engineering Applications - GOMA/EXODUS Application Example 220

the
be

e for

 and

n

ere

lter,

n is
Invokation of text_book:

The command syntax which DAKOTA will use is as shown
below. Parameters and results file names will be passed on
command line to the specified executable and file tagging will
employed to keep the file names unique. The names of the
parameters and results files are passed on the command lin
the convenience of the application developer, since these
arguments can be used to remove hard coding of file names
improve generality:

text_book text_book.in.1 text_book.out.1

The text_book.in.1 parameters file is:
 2 variables 3 functions
 9.0000000000e-01 x1
 1.1000000000e+00 x2
 1 ASV_1
 1 ASV_2
 1 ASV_3

and the text_book.out.1 results files is:
 2.0000000000e-04 f
 2.6000000000e-01 c1
 7.1000000000e-01 c2

Results:

The dot_sqp method converges to the optimal solution in 17 total function evaluations whe
foward finite differences are used

<<<<< Single method iteration completed.
<<<<< Function evaluation summary: 17 total (16 new, 1 duplicate)
<<<<< Best design parameters =
 5.9442052455e-01 x1
 7.0668310706e-01 x2
<<<<< Best objective function =
 3.4460496673e-02
<<<<< Best constraint values =
 -5.7935237028e-06
 -5.9898619602e-04

Example text_book recast in GOMA format: Filter Introduction

There are several ways of interfacing DAKOTA with a simulation code. The method used h
applies DAKOTA’s 1-piece Interface capability. For this method DAKOTA makes one system
call per function evaluation and all control over the evaluation is given to the user. DAKOTA
also has a 3-piece Interface capability which performs separate system calls for the input fi
simulation code, and the output filter, in that order, to evaluation of the cost function and
constraints. In the optimization problems described here, the evaluation of the cost functio
Example Problems Engineering Applications - GOMA/EXODUS Application Example 221

e 1-

t codes

, and

 then

ator
e

ed
de for
performed by a combination of C programs and a supervisory UNIX shell program using th
piece Interface capability.

Figure 1 outlines how variables and response data are passed as files and how the differen
interact. A DAKOTA input file (e.g.,dakota_sample.in) specifies control parameters for
the DAKOTA optimization run such as names of the variables and response fileparams.in
andresults.out , respectively, the number of design variables, their bounds and initial
values, information concerning the number of constraints and how gradients are calculated
the optimization method desired.

Just prior to requesting a function evaluation, DAKOTA writes the fileparams.in . This file
contains the current values of the design variables and anactive set vector code request for
values of the function and constraints, their gradients, and/or the Hessian matrix. DAKOTA
spawns a system call andparams.in is read by the user’s shell programcost.sh . The shell
program is fairly simple in that all it does is executein_filt.c , GOMA, andout_filt.c
in the appropriate order.

The input filter program,in_filt.c , places design variables identified in fileparams.in
into a file that is formatted for use by APREPRO. This file is “included” into the mesh gener
file or into the GOMA input deck. GOMA is then run and an EXODUS file is generated. Th
output filter program,out_filt.c , then reads the EXODUS file, extracts the necessary
results, computes the cost function and the value of the constraints, and then writes the file
results.out in DAKOTA readable format.

The programsin_filt.c andout_filt.c are written in a general format. The input filter
can be run without any modification in most optimizations. A skeleton output filter is provid
that only requires the subroutines to evaluate the cost functions and the constraints. The co
writing the fileresults.out file is also provided.

in_filt.c out_filt.cMesh/GOMA

DAKOTAparams.in results.out

cost.sh

Figure 1. DAKOTA interface scheme
Example Problems Engineering Applications - GOMA/EXODUS Application Example 222

ou

urn

wline,
tion
DAKOTA Filter Tutorial

Thetext_book example will be revisited in this portion of the
tutorial, and will be recast in the form used by the GOMA
applications. The problem formulation, as before, is

(30)

subject to simple bounds on the variables:x1 andx2 which range between -10 and +10. The

following steps are used to generate a 3-piece interface.

1. Change directories into the “tutorial” directory (this location will depend on the course y
are taking and how you installed your software).

2. You will notice the directory contains five files:in_filt.c , out_filt.c ,
dak_goma.h , cost.sh , andtut.in . The filetut.in is the DAKOTA input
specification as discussed earlier. Issue the following commands:

more tut.in

The first part of the file defines how the DAKOTAinterface is set up. A slash, at the end
of a line signifies a continuation. It must be present immediately before any carriage ret
prior to the end of a keyword specification (e.g.interface , method , variables ,...)
This syntax is necessary because the parser detects keyword input completion with a ne
so newlines entered for readability must be escaped with a ‘\’. Note that the communica
files are set up to be namedparams.in andresults.out . The cost function is
evaluated in the filecost.sh , which is called whenever DAKOTA issues the command

cost.sh params.in results.out

to the operating system. The shell functioncost.sh must therefore be coded with this in
mind (as we will see next).

interface, \
 application system, \
 input_filter = ‘NO_FILTER’ \
 output_filter = ‘NO_FILTER’ \
 analysis_driver= ‘cost.sh’ \
 parameters_file= ‘params.in’ \
 results_file= ‘results.out’ \
 analysis_usage = ‘DEFAULT’

Next, the design variables are set up. Note that there are two design variables,x1 andx2,

and the starting point is (2, 2). Each variable may range between -10 and +10.
variables, \
 continuous_design = 2 \

f x 1 1–()4
x 2 1–()4

g1

+

x 1
2 x 2

2
------– 0

g2

≤

x 2
2

0.5– 0≤

=

=

=

Example Problems Engineering Applications - GOMA/EXODUS Application Example 223

ated

n the
 cdv_initial_point 2.0 2.0\
 cdv_upper_bounds 10.0 10.0\
 cdv_lower_bounds -10.0 -10.0\
 cdv_descriptor ‘x1’ ‘x2’

The response specification describes the number of constraints and the source of the
gradients. In this problem and in the problems utilizing GOMA, the gradients are calcul
using a forward difference scheme:

responses, \
 num_objective_functions = 1 \
 num_linear_constraints = 0 \
 num_nonlinear_constraints = 2 \
 numerical_gradients \

method_source vendor \
interval_type forward \
fd_step_size = 0.001 \

 no_hessians

The last portion selects the optimization technique to be used.
method, \
 dot_sqp, \

max_iterations = 50, \
convergence_tolerance = 1e-8 \
output verbose \
optimization_type minimize

3. Now execute the command:
more cost.sh

This file is the supervisory file that controls the cost function evaluation. This simple
example has no GOMA evaluation.

#! /bin/csh -f
#
This shell file evaluates the cost function
for a dakota run
#
in_filt $argv[1] out.app

GOMA run goes here!!

out_filt $argv[1] $argv[2]

The input filter, in_filt.c , places the design variables identified in fileparams.in into
a file,out.app . The fileout_filt.c will take the fileout.app and evaluate the cost
function then write the fileresults.out . The first line of the filecost.sh is necessary
for the shell to execute correctly. The variables$argv[1] and$argv[2] refer to the first
argument and the second argument in the call statement.

4. Now look at the input filter using the command:
more in_filt.c

The first portion of the file sets up various definitions and prototypes the functions used i
program:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

void input_filter(FILE *input_file, FILE *param_file);
Example Problems Engineering Applications - GOMA/EXODUS Application Example 224

n
s.
he
The program is controlled frommain() . This routine performs error checking on the
number of arguments used to call the program, opensparams.in for reading and
out.app for writing and calls the subroutine to perform the filtering operation,
input_filt() .

void main(int argc,char *argv[])
 {

 FILE *input_file, *param_file;

 if (argc<2)
 {
 printf(ÒNeed an output filename, exiting\nÓ);
 exit(-1);
 }

 if ((input_file=fopen(argv[1],ÓrÓ)) == NULL)
 {
 printf(ÒCouldnÕt open file: %s exiting.\nÓ,argv[1]);
 exit(-1);
 }

 param_file=fopen(argv[2],ÓwÓ);

 input_filter(input_file, param_file);
 exit(0);

 }

The first line ofparams.in specifies the number of design variables (n_param) and a
string (tag). The nextn_param lines are the value of each of the design variables with a
identification tag. The last lines are the ASV for the function and each of the constraint
The ASV can be ignored in this input filter since only function values will be returned. T
initial params.in file for this problem is listed below:

 2 variables 3 functions
 2.0000000000e+00 x1
 2.0000000000e+00 x2
 1 ASV_1
 1 ASV_2
 1 ASV_3

The last portion of the filein_filt.c is the input filter subroutine. It just reads
params.in and writesout.app using the format in the above paragraph.

void input_filter(FILE *input_file, FILE *param_file)
{
int i, n_param,n_g;
float dum_param;
char tag1[10],tag2[10];

fscanf(input_file,”%d %s %d %s”,&n_param,tag1,&n_g,tag2);

for (i=0;i<n_param;i++)
 {
 fscanf(input_file,”%f %s”,&dum_param,tag1);
 fprintf(param_file,”#{%s = %f}\n”,tag1,dum_param);
 }
}

The contents of the fileout.app will look something like:
#{x1 = 2.000000}
#{x2 = 2.000000}
Example Problems Engineering Applications - GOMA/EXODUS Application Example 225

and
You will recognize this as input for APREPRO.

5. The final file is the output filter (out_filt.c). Normally, it reads an EXODUS file to get
the results of a GOMA run. In this case, the fileout.app will represent the EXODUS file
to simplify the description of the filters. As within_filt.c , the first lines set up
definitions and prototypes for the remaining code.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#define NUM_PARAM 2
#define MAX_LINE 80

float cost_fun(FILE *exoid);

float *asv_read(FILE *input_file,int *n_param, int *n_g, int **asv);

void output_filter(int *asv, int n_param, float *params, int n_g, FILE
*output_file);

Themain() routine inout_filt.c once again controls the filter process as with
in_filt.c . First some error checking is performed to insure the correct number of
arguments are being passed. Next the filesparams.in and results.out are opened. The
remaining functions are the meat of the program and will be discussed next.

int main(int argc,char *argv[])
{

int *asv, n_param,i, n_g;
float *params;
FILE *input_file, *output_file;

if (argc<3)
{
 printf(“Need both input and output files specified, exiting \n”);
 exit(-1);
}

input_file=fopen(argv[1],”r”);

output_file=fopen(argv[2],”w”);

params=asv_read(input_file,&n_param,&n_g,&asv);

output_filter(asv, n_param, params, n_g, output_file);

exit(0);
}

The subroutineasv_read() reads theparams.in file returning the ASV information
and the values of the parameters. This allows the program to correctly determine what
DAKOTA is requesting and to allow the parameters to be available for the cost function
the constraint evaluation. The arrayasv[] and the arrayparams[] are alloced in
asv_read() . This is done here with thecalloc() statement.

float *asv_read(FILE *input_file, int *n_param, int n_g, int **asv)
{
 int i;
 char junk1[MAX_LINE],junk2[MAX_LINE];
 float *params;

 fscanf(input_file,Ó%d %sÓ,n_param,junk1,n_g,junk2);
 *n_g = *n_g - 1;
Example Problems Engineering Applications - GOMA/EXODUS Application Example 226

rms
r as
e

 params= (float *)calloc(*n_param, sizeof(float));
 *avs=(int *)calloc(*n_g +1, sizeof(int));

 for (i=0;i<*n_param;i++) fscanf(input_file,Ó%f %s\nÓ,¶ms[i], junk);

 for (i=0;i<=*n_g;i++)
 {
 fscanf(input_file,Ó%d %s\nÓ,&(*asv)[i],junk1);
 }
 fclose(input_file);
 return(params);
}

The next subroutine is the actual output filter (out_filt.c). This subroutine opens the
EXODUS file (in this caseout.app) and evaluates the constraints,g[n_g] and the cost
function,J_cost . In this example the cost function is evaluated using the routinecost()
and the constraints are just combinations of the parameters. The remaining code prefo
error checks on the ASV to be sure that the DAKOTA input specification is correct as fa
the gradients and Hessians that can be provided by the output filter. It also writes out th
results.out file with the appropriate information.

void output_filter(int *asv, int n_param, float *params, int n_g, FILE
 *output_file)
{
 int i;
 float J_cost;
 float *g;
 FILE *exoid;

 g=(float *)calloc(n_g ,sizeof(float));

 exoid=fopen(Òout.appÓ,ÓrÓ);
/* determine cost function and constraints*/

 g[0] = params[0]*params[0] - params[1]/2.;
 g[1] = params[1]*params[1] -0.5;

 J_cost = cost_fun(exoid);

 /* write dakota output file */

 if (asv[0]>3)
 {
 printf(ÒHessian is not available, exiting\nÓ);
 exit(-1);
 }

 if (asv[0]>2)
 {
 printf(ÒGradient is not available, exiting\nÓ);
 exit(-1);
 }

 if (asv[0]==1 || asv[0]==3 ||asv[0]==5)
 {
 fprintf(output_file,Ó%g f\nÓ,J_cost);
 }

 for (i=1;i<=n_g;i++)
 {
 if (asv[i]==1 || asv[i]==3 || asv[i]==5)
 fprintf(output_file,Ó%g c%d\nÓ,g[i-1], i);
 else
 {
 printf(ÒNumber of parameters is probably wrong: exiting.\nÓ);
 exit(-1);
 }
 }
Example Problems Engineering Applications - GOMA/EXODUS Application Example 227

ple.

an
ges
t

hat
re
rate.

0K
 free(g);
}

The final routine evaluates the cost function. In this case, this routine is exceptionally sim
It just reads the file out.app and runs the parameters through a formula:

float cost_fun(FILE *exoid)
{
int i;
float x[NUM_PARAM], J_cost, a, b;
char cdum[2];

for (i=0;i<NUM_PARAM;i++)
 {
 fscanf(exoid,”#{%s = %f}\n”,cdum,&x[i]);
 printf(“ x[%d] = %g \n”,i,x[i]);
 }

a=(x[0]-1.);
b=(x[1]-1.);

J_cost = a*a*a*a + b*b*b*b;

return J_cost;
}

6. To compile a program with EXODUS subroutines in it, excute a command similar to:
 cc -o in_filt in_filt.c -lexoIIv2c -lnetcdf -lnsl -lm

7. Now the optimization can be run. To execute the optimization, issue the command:
dakota -i tut.in

Wait until the thing finishes and enjoy the results.

Dryer Design Example

This section presents an extension of the tutorial problem to
example problem that you care about. The shell program chan
trivially, the input filter doesn’t change at all, and only the cos
function evaluation changes in the output filter. The problem t
is being solved is the multilayer drying problem shown in Figu
2. The one dimensional problem has two solvents and a subst
The cost function is the concentration ofsolvent 0 at the end
of the simulation, which for this case is 200 sec. The design
variable is the oven temperature, which has a constraint of 37
to prevent boiling.
Example Problems Engineering Applications - GOMA/EXODUS Application Example 228

n

anged

file
Dryer Design Tutorial:

1. There are a few differences in the input specification to DAKOTA. The specification is i
dryer.in . The first is the change in the name of the analysis driver:

analysis_driver= ‘dryer.sh’

The variable description also changes:
variables, \

 continuous_design = 1 \
 cdv_initial_point 300.0 \
 cdv_upper_bounds 600.0 \
 cdv_lower_bounds 0. \
 cdv_descriptor ‘T_inf’

The final change is in the responses section. Here the number of constraints must be ch
to reflect the current problem:

num_nonlinear_constraints = 1 \

2. The shell functiondryer.sh is identical tocost.sh described above except for the
GOMA evaluation. To look at the file execute:

more dryer.sh

The file looks like
#! /bin/csh -f
#
#This shell file evaluates the cost function
#for a dakota run
#
in_filt $argv[1] dryer.app

goma -a -i ml_input -se stderr -so stdout

dryer $argv[1] $argv[2]>>& goma.src

3. The input filter is identical. To check this execute:
more in_filt.c

Note that the output of the input filter is the filedryer.app as can be seen from the file
dryer.sh , which contains the oven temperature. This file is read by the GOMA input
Defs.app . Check this file now to see the include statement at the top of the file.

Solvent 1

Solvent 0

Substrate

T_inf T_init

Figure 2 Drying Problem setup
Example Problems Engineering Applications - GOMA/EXODUS Application Example 229

the

alues
l

4. The simulation is identical to the templatedryer.ml provided to you in your distribution.
If you are not familiar with it, become familiar with it.

5. The major changes are in the output filter,dryer.c for this problem. Only the cost function
evaluation will be discussed. The remaining code is as it was described above. Any
variables in all capital letters are defined in the header.

The cost function requires interrogating the EXODUS file that is generated by GOMA for
concentration of the solventY0 at a node near the substrate (node 8). Open the file
dryer.c by executing:

emacs dryer.c

Move the cursor down to the portion of the code where the functionoutput_filter() is
defined. After the definition of the necessary variables, the first line of code opens the
EXODUS file using an EXODUS provided subroutine:

/* page 25 of SAND92-2137 */
/* Open file */

 CPU_word_size=sizeof(float);
 IO_word_size=0;

 exoid=ex_open(filename,EX_READ,&CPU_word_size,&IO_word_size,&version);

Note that the comments give the reference page in the EXODUS users manual which is
available on-line athttp://sass577.endo.sandia.gov/SEACAS/SEACAS.html

Theexoid output is used to reference the file. It is of typeint . Now the cost function
cost_fun() is called with the argument beingexoid . After some variable definitions,
the number of variables are determined from the database and the array for the variable
names is set up:

/* page 133 of SAND92-2137 */

error=ex_get_var_param(exoid,”n”,&num_nodal_var);

for (i=0;i<num_nodal_var;i++)
 var_names[i] = (char *) calloc((MAX_STR_LNG+1),sizeof(char));

Next, the variable names are extracted and the index of the appropriate variable,Y0, is
determined. The variables are referenced in the database by their index and this will be
needed when extracting the concentration time history.

/* page 137 of SAND92-2137 */
error=ex_get_var_names(exoid,”n”,num_nodal_var,var_names);

/* find the velocity variables */

for (i=0;i<num_nodal_var;i++)
 {
 if (strcmp(CONC,var_names[i])==0) CONC_var_index=i+1;
 }

Next, the number of time steps are determined and the arrays to hold all the time step v
and the values of the concentration history at node 8 are allocated. The array times wil
contain the time axis.

/* page 41 of SAND92-2137 */
/* determine number of time steps and use the last one */
error=ex_inquire(exoid,EX_INQ_TIME,&num_time_steps,&fdum,cdum);
Example Problems Engineering Applications - GOMA/EXODUS Application Example 230

used

ction
d after
concentration = (float *) calloc(num_time_steps,sizeof(float));
times = (float *) calloc(num_time_steps,sizeof(float));

/* page 143 of SAND92-2137 */
error = ex_get_all_times(exoid,times);

Now the concentration history at node 8 is read and the last value of the concentration is
for the cost function

/* page 167 of SAND92-2137*/

error = ex_get_nodal_var_time(exoid, CONC_var_index,NODE,1,

num_time_steps,concentration);
printf(“ %g %g \n”,concentration[0],concentration[num_time_steps-1]);
J_cost=concentration[num_time_steps-1];

6. To compile a program with EXODUS subroutines in it, execute a command similar to:
cc -o in_filt in_filt.c -lexoIIv2c -lnetcdf -lnsl -lm

7. To run the simulation, just type:
dakota -i dryer.in

8. Sit back and watch it run.

Dryer Parameter Study in Fortran:

This section will go through an example of a FORTRAN interface between DAKOTA and
GOMA. The example will be a multi-dimensional parameter study using the same cost fun
as the previous example, namely the concentration of the solvent at the substrate at the en
200 sec. The two variables that will vary are the oven temperature,T_inf , and the convection
coefficient,Kh.

1. The input specification,dryer.in , for DAKOTA is as follows:
interface, \

application system, \
 input_filter = ‘NO_FILTER’ \
 output_filter = ‘NO_FILTER’ \
 analysis_driver= ‘dryer.sh’ \
 parameters_file= ‘params.in’\
 results_file= ‘results.out’\
 analysis_usage = ‘DEFAULT’

variables, \
continuous_design = 2 \
 cdv_initial_point 300.0 -50 \
 cdv_upper_bounds 600.0 -50\
 cdv_lower_bounds 0. 0\
 cdv_descriptor ‘T_inf’ ‘Kh’

responses, \
num_objective_functions = 1 \
num_linear_constraints = 0 \
num_nonlinear_constraints = 1 \
no_gradients \
no_hessians

strategy, \
single_method

method, \
 multidim_parameter_study\
Example Problems Engineering Applications - GOMA/EXODUS Application Example 231

 is the

ious

sy
y the
nput
partitions = 10 10

The main difference between this file and the ones discussed in the previous examples
variables section and themethod section.

The next file necessary is the shell filedryer.sh which runs the simulation and controls
the cost function evaluation. It is pretty simple and has been discussed in both the prev
examples:

#! /bin/csh -f
#
#This shell file evaluates the cost function
#for a dakota run
#
in_filt

goma -a -i ml_input -se stderr -so stdout

dryer

2. The input filter in FORTRAN is a little less general than the one written in C. It is not ea
to pass command line arguments in FORTRAN and therefore the files read and written b
input filter have to be hard coded. It is imperative that the files coded to be read in the i
filter are identical to those used in the dakota input specification. This means that
file_tag andfile_save cannot be used, nor can the default file names for the
parameter file or the results file.

 program in_filt
c
c This is a poor man’s version of
c the c program in_filt.c
c LEARN C!!!
c

 integer i, nparam, nfun
 real dparam
 character*10 tag, junk

 open(22,file=’params.in’,status=’old’)
 open(33,file=’dryer.app’,status=’unknown’)

 read(22,*) nparam, tag, nfun, junk

 do 10 i=1, nparam
 read(22,*) dparam,tag
 write(33,’(1x,a2,a10,a1,f16.8,a1)’) "#{",tag,"=",dparam,"}"
 10 continue

 end

3. The function that evaluates the cost function,dryer.f , is now described. As with the input
filter the filenames have to be hard coded, limiting the generality of the code. The main
program does little except call the appropriate subroutines in the appropriate order

 program dryer
 include ‘/usr/local/inc/exodusII.inc’
 character*12 infile, outfile
 integer asv(3), nparam, ng
 real params(2)

 infile = ‘params.in’
 outfile = ‘results.out’

 call asvrd(infile, nparam, ng, asv, params)
Example Problems Engineering Applications - GOMA/EXODUS Application Example 232

 of
e

 call outfilt(asv, nparam, params, ng, outfile)

 stop
 end

The first subroutine,asvrd() , reads the parameters file,params.in , and determines the
values of the parameters and the ASV

 subroutine asvrd(infile, nparam, ng, asv, params)
 character*12 infile
 character*50 junk, junk1
 integer i, nparam, ng, asv(3)
 real params(2)

 open(unit=22, file=infile, status=’old’)

 read(22,*) nparam, junk, ng, junk1
 ng=ng-1

 do 10 i=1,nparam
 read(22,*) params(i), junk
 10 continue

 do 20 i=1,ng+1
 read(22,*) asv(i), junk
 write(*,*) asv(i), junk
 20 continue

 close(22)
 end

The next subroutine,outfilt() , opens the EXODUS database and controls the writing
the file,results.out for DAKOTA to read. It does a lot of checks to make sure that th
function values and their gradients that DAKOTA asks for through the ASV are, in fact,
available

 subroutine outfilt(asv, nparam, params, ng, outfile)
 include ‘/usr/local/inc/exodusII.inc’
 integer asv(3), i, nparam, ng
 real params(2)
 character*12 outfile
 real J_cost, g(2)

 integer cpu_ws, exopen, exread, io_ws, idexo, ierr
 real vers

 cpu_ws=0
 io_ws=0

c page 25 of SAND92-2137

 idexo = EXOPEN ("out.exoII", EXREAD, cpu_ws, io_ws, vers, ierr)

 g(1) = params(1) - 370.0

 J_cost = costf(idexo)

 open(unit=33, file=outfile, status=’unknown’)

 if (asv(1) .gt. 3) then
 write(*,*) ‘Hessian is not available, exiting ‘
 call exit(0)
 endif

 if (asv(1) .gt. 2) then
 write(*,*) ‘Gradient is not available, exiting ‘
 call exit(0)
Example Problems Engineering Applications - GOMA/EXODUS Application Example 233

S
te
at the

n this
 endif

 if (asv(1) .eq. 1 .or. asv(1) .eq. 3 .or. asv(1) .eq. 5) then
 write(33,*) J_cost, ‘ f’
 endif

 do 30 i=1,ng

 if (asv(i) .gt. 3) then
 write(*,*) ‘Hessian is not available, exiting ‘
 call exit(0)
 endif

 if (asv(i) .gt. 2) then
 write(*,*) ‘Gradient is not available, exiting ‘
 call exit(0)
 endif

 if (asv(i) .eq. 1 .or. asv(i) .eq. 3 .or. asv(i) .eq. 5) then
 write(33,*) g(i), ‘ g1’
 write(*,*) g(i)
 endif

 30 continue

 end

The last function,costf() , calculates determines what the value of the solvent at the
substrate is at the end of the simulation (200 sec). It uses a lot of calls from the EXODU
subroutine library and page numbers in the EXODUS reference guide are give to facilita
reading the code. The variable exoid is used to reference the EXODUS database file th
GOMA results will be read from.

 real function costf(idexo)
 include ‘/usr/local/inc/exodusII.inc’
 integer cvarind, extims, i, idexo, ntime, nvar, ierr

 real redum, time
 real time(500), concen(500)
 character*(MXSTLN) vname(20)
 character cdum

First, we need to know how many variables are in the database
c page 133 SAND92-2137

 call EXGVP(idexo, "n", nvar, ierr)

c page 137 SAND92-2137

Next, we read the variable’s names in and determine which one is the one of interest. I
case we are interested inY0.

 do 40 i=1,nvar
 if (vname(i) .eq. "Y0") then
 cvarind = i
 endif
 40 continue

Now we find out how many time steps are in the database
c page 41 of SAND92-2137

 call EXINQ(idexo, EXTIMS, ntime, redum, cdum, ierr)
c page 144 of SAND92-2137
Example Problems Engineering Applications - GOMA/EXODUS Application Example 234

e

 to
y

gle a
n

 call EXGATM(idexo, time, ierr)

Finally we read in all the values ofY0 through time and take the last one, then close the fil
c page 167 of SAND92-2137

 call EXGNVT(idexo, cvarind, 8, 1, ntime, concen, ierr)

 costf=concen(ntime)

c page 27 of SAND92-2137

 call EXCLOS(idexo,ierr)
 return
 end

4. To compile a FORTRAN program with EXODUS commands in it, execute a command
similar to:

f77 -o dryer dryer.f -lexoIIv2for -lexoIIv2c -lnetcdf -lnsl

5. To run the simulation, just type
dakota -i dryer.in

6. Sit back and watch it run.

Slot Coater Example

The slot coater example utilizes the failure capture option in DAKOTA. There are two ways
insure a solution throughout the optimization: The first is to set the relaxation schedule ver
conservatively and the other is to rely on continuation. By relying on continuation, the
optimization runs significantly faster. In this optimization, there was no relaxation used.

The parameterization used for this example is shown in Figure 3. Only the gap and the an
were used in the optimization. The parameters used for the starting point of the optimizatio
were taken from

Sator (1990),Slot Coating, PhD. Thesis University of Minnesota, Available on University
Microfilms, Ann Arbor, Michigan.
Example Problems Engineering Applications - GOMA/EXODUS Application Example 235

nges

n.
ion
The cost function used for this optimization is

(31)

The design variable, as it is currently set up, is the gap length and the angleα. The cost function
was choosen to minimize the sensitivity of the movement of the dynamic contact line to cha
in the webspeed or the back pressure.

Slot Coater Tutorial:

1. As with all the examples before, the first file necessary is the DAKOTA input specificatio
This example is identical to all the optimization problems so far except for the specificat
of the design variables and the addition of the failure capture command in the interface
specification. The file is calledslot.in . The changed portions of the specification for
this problem is

interface, \
 application system, \
 input_filter = ‘NO_FILTER’ \
 output_filter = ‘NO_FILTER’ \
 analysis_driver= ‘slot.sh’ \
 parameters_file= ‘params.in’ \
 results_file= ‘results.out’ \
 analysis_usage = ‘DEFAULT’ \
 failure_capture continuation

######

1
2 3

4

5 6

Gap

h1 h2 h3

α L1
L2

S1

S2

7 8 9 10

L3

11 12

13 14

15

16
1718

Figure 3 Slot coat parameterization

J
28.5
0.02
---------- 

 
uweb∂

∂
x dcl()

2850
0.01
------------ 

 
Pvac∂

∂
x dcl()+=

0.35 Gap<0.7<
0.2 α 0.2< <–
Example Problems Engineering Applications - GOMA/EXODUS Application Example 236

ion

en
he
the
variables, \
 continuous_design = 2 \
 cdv_initial_point 0.05 0.0\
 cdv_upper_bounds 0.07 0.2\
 cdv_lower_bounds 0.035 -0.2\
 cdv_descriptor ‘Gap_new’ ‘alpha_new’

2. The C-shell file,slot.sh , should look pretty familiar also
#! /bin/csh -f
#
This shell file evaluates the cost function
for a dakota run
#
in_filt $argv[1] slot.app

goma -a -i slot_input -se stderr -so stdout

slot $argv[1] $argv[2]

3. The input filterin_filt.c is identical to all the previous input filters.

4. The major difference is in the cost function,slot.c . The subroutinesmain() and
asv_read() are the same. However, the routineoutput_filter() has been changed
to incorporate a failure capturing scheme. There has been add to GOMA four global
variables that indicate the convergence status of the GOMA simulation. They are:

• CONVBoolean convergence (1=> converged, 0=> not converged)

• NEWT_ITNumber of Newton Iterations specified in the GOMA input file

• MAX_ITNumber of Newton Iterations taken by the simulation

• CONVRATEThe log10 relative convergence rate at the second to last and the last iterat
taken

The subroutine converge inslot.c takes care of reading these values. The subroutine
out_filt look like

void output_filter(int *asv, int n_param, double *params, int n_g,
 FILE *output_file)

{
 char filename[]=GOMA_FILE;
 int CPU_word_size, IO_word_size;
 float version;
 int exoid, i;
 double J_cost;
 double *g;
 int newt_it, max_it,error;
 double convrate;

 g=(double *)calloc(n_g ,sizeof(double));

/* page 25 of SAND92-2137 */
/* Open file */

 CPU_word_size=sizeof(double);
 IO_word_size=0;

This section of the code is the most different. Note how the EXODUS file is opened, th
the convergence is checked. If the simulation didn’t converge, a failure is flagged and t
program exits. If the simulation didn’t converge but it ran out of newton iterations, then
Example Problems Engineering Applications - GOMA/EXODUS Application Example 237

program exits and a “1” is returned so the shell program can rerun GOMA (not yet
implemented). If it has converged, then it writes the results.out file as before.

 exoid=ex_open(filename,EX_READ,&CPU_word_size,&IO_word_size,&version);

 error = converge(exoid, &max_it, &newt_it, &convrate);

 if (!error) {
 /* determine cost function and constraints*/

 system("cp soln.dat contin.dat");

 g[0] = - 0.5e-4;
 J_cost = cost_fun(exoid);

 J_cost=J_cost*J_cost;

 printf("J= %g\n",J_cost);

 /* write dakota output file */

 if (asv[0]>3) {
 printf("Hessian is not available, exiting\n");
 exit(-1);
 }

 if (asv[0]>2) {
 printf("Gradient is not available, exiting\n");
 exit(-1);
 }

 if (asv[0]==1 || asv[0]==3 ||asv[0]==5) fprintf(output_file,
"%g f\n",J_cost);

 for (i=1;i<=n_g;i++) {
 if (asv[i]==1 || asv[i]==3 || asv[i]==5) {
 fprintf(output_file,"%g c%d\n",g[i-1],i);
 }
 else {
 printf("Number of parameters is probably wrong: exiting.\n");
 exit(1);
 }
 }
 return;
 }
 if (newt_it == max_it && convrate > 0.0) {
 printf("Not converged!! \n");
 exit(1);
 }
 else {
 fprintf(output_file,"FAIL\n");
 }

 free(g);
}

5. Theconverge() routine is fairly basic. It reads the global variables from the EXODUS
database, then sends them back.

int converge(int exoid, int *max_it, int *newt_it, double *convrate)
{
 int i, inewt, iconv, imax, irate;
 int ret_int, ntime, nvar, conv;
 int error;
 char *cdum=0, *gvar_name[NUM_G_VAR];
 float fdum;
 double gvar[NUM_G_VAR];

 error=ex_inquire(exoid, EX_INQ_TIME, &ntime, &fdum, cdum);
Example Problems Engineering Applications - GOMA/EXODUS Application Example 238

ce
 error=ex_get_var_param(exoid, "g", &nvar);

 for (i=0; i<nvar;i++) gvar_name[i]= (char *) calloc((MAX_LINE+1),
 sizeof(char));

 error=ex_get_var_names(exoid, "g",nvar, gvar_name);

 for (i=0;i<nvar;i++) {
 if (strcmp(CON_VAR,gvar_name[i])==0) iconv=i;
 if (strcmp(NEWT_VAR,gvar_name[i])==0) inewt=i;
 if (strcmp(MAX_VAR,gvar_name[i])==0) imax=i;
 if (strcmp(RATE_VAR,gvar_name[i])==0) irate=i;

 }

 /* Page 159 SAND92-2137 */
 error=ex_get_glob_vars(exoid, ntime, nvar, gvar);

 if (error == 0) {
 *newt_it=(int) gvar[inewt];
 *max_it=(int) gvar[imax];
 *convrate= gvar[irate];
 conv=(int) gvar[iconv];
 }
 else {
 *newt_it= -1;
 *max_it= -1;
 *convrate= -999999.0;
 conv=0;
 }
 return !conv;
}

The cost function evaluation subroutine,cost_fun() , is more complicated. Actually it
isn’t that difficult, it just looks that way. Basically there are two files,webspeed.app and
vacuum.app which are read bycost_fun() . First, the nominal position of the dynamic
contact point is read. Procedurecost_fun() then perturbs the values inwebspeed.app
and calls GOMA, then reads the perturbed value of the dynamic contact point. This is
repeated for the back pressure. The perturbed values are then used for a finite differen
calculation.

double cost_fun(int exoid_nom)
{
 int i, CPU_word_size, IO_word_size;
 int error, exoid_delta ,idum;
 int ns_num_nodes, *ns_node_list;
 double fdum, J1, J2;
 float version;
 double webspeed_nom,webspeed_delt;
 double Pvacuum_nom,Pvacuum_delt, g1,g2;
 double *ns_X,*ns_Y,*ns_Z,*ns_displx_nom, *ns_displx_delt;
 char filename[]=GOMA_FILE,cdum[9];
 FILE *in_file;

 error=ex_get_node_set_param(exoid_nom, NSET, &ns_num_nodes,&idum);
 ns_node_list=(int *) calloc(ns_num_nodes,sizeof(int));

 error=ex_get_node_set(exoid_nom,NSET, ns_node_list);

 ns_X=(double *) calloc(ns_num_nodes,sizeof(double));
 ns_Y=(double *) calloc(ns_num_nodes,sizeof(double));
 ns_Z=(double *) calloc(ns_num_nodes,sizeof(double));
 ns_displx_nom=(double *) calloc(ns_num_nodes,sizeof(double));
 ns_displx_delt=(double *) calloc(ns_num_nodes,sizeof(double));

 get_displ(exoid_nom,NSET,ns_num_nodes,ns_node_list, ns_X, ns_Y, ns_Z,
Example Problems Engineering Applications - GOMA/EXODUS Application Example 239

 ns_displx_nom);

 /******************/
 in_file=fopen(WEBFILE,”r”);
 fscanf(in_file,”${%s = %lf}”,cdum,&webspeed_nom);

 fclose(in_file);

 webspeed_delt=(1.0+FDEPS)*webspeed_nom;
 in_file=fopen(WEBFILE,”w”);
 fprintf(in_file,”${webspeed = %f}\n”,webspeed_delt);
 fclose(in_file);

 system(“/home/prschun/.sun5/bin/goma -a -i slot_input -se
 stderr -so stdout”);
 /*system(“/home/prschun/.sun5/bin/goma -a -i slot_input”);*/
 in_file=fopen(WEBFILE,”w”);
 fprintf(in_file,”${webspeed = %f}\n”,webspeed_nom);
 fclose(in_file);

 CPU_word_size=sizeof(double);
 IO_word_size=0;

exoid_delta=ex_open(filename,EX_READ,&CPU_word_size,&IO_word_size,&version);

 get_displ(exoid_delta,NSET,ns_num_nodes,ns_node_list, ns_X, ns_Y, ns_Z,
 ns_displx_delt);
 /***************/
 g1= webspeed_nom/Ls;g1=1.0e3;
 J1= (ns_displx_delt[0] - ns_displx_nom[0])/(webspeed_delt-webspeed_nom);
 /******************/
 in_file=fopen(PRESSFILE,”r”);
 fscanf(in_file,”${%s = %lf}”,cdum,&Pvacuum_nom);
 fclose(in_file);
 Pvacuum_delt=(1.0+FDEPS)*Pvacuum_nom;
 in_file=fopen(PRESSFILE,”w”);
 fprintf(in_file,”${vacuum = %f}\n”,Pvacuum_delt);

 fclose(in_file);
 system(“/home/prschun/.sun5/bin/goma -a -i slot_input -se stderr -so
 stdout”);
 /*system(“/home/prschun/.sun5/bin/goma -a -i slot_input”);*/
 in_file=fopen(PRESSFILE,”w”);
 fprintf(in_file,”${vacuum = %f}\n”,Pvacuum_nom);
 fclose(in_file);

 CPU_word_size=sizeof(double);
 IO_word_size=0;

exoid_delta=ex_open(filename,EX_READ,&CPU_word_size,&IO_word_size,&version);

 get_displ(exoid_delta,NSET,ns_num_nodes,ns_node_list, ns_X, ns_Y, ns_Z,
 ns_displx_delt);

 /***************/
 g2=abs(Pvacuum_nom/Ls);g2=1.0e7;
 J2= (ns_displx_delt[0] - ns_displx_nom[0])/(Pvacuum_delt - Pvacuum_nom);
 /*printf(“J1 = %e , J2 = %e \n”,J1,J2);*/
 return ALPHA*J1 + BETA*J2;
}

6. Now compile the code and run DAKOTA.
Example Problems Engineering Applications - GOMA/EXODUS Application Example 240

er
is.

er
asy
 can
3)

easily
will

TA
 13 -

t.sh.
Appendix

This appendix will briefly describe the process of using DAKOTA with another analysis driv
such as FIDAP. The procedure is basically identical to when GOMA is used for the analys

1. Set up optimization by writing a DAKOTA input file. (See page 2-4 for example)

2. Write an input filter to take the file params.in generated by DAKOTA (format of paramet
file is on page 8) and write and output file that can be used by your analysis code. An e
way to do this is to use APREPRO. If APREPRO is always used, the input filter in_filt.c
be written generally enough so that it can be used for all optimizations. (see pages 11-1

3. Now parameterize your model so that the design variables that you want to vary can be
changed by APREPRO. Make sure the output from your code has the information you
need to evaluate your cost function.

4. Write a program (out_filt.c) that takes the output from your code, evaluates your cost
function, and writes a file (results.out) that (i) has the information requested from DAKO
(this is specified in params.in) and (ii) is in a format that DAKOTA can read. (see pages
16)

5. In this tutorial, the programs that result from steps 2-4 are driven by a shell program cos
DAKOTA, therefore, only has to call the shell program to evaluate the cost function.

Copy to:
MS0826 9111 Dayfile
MS 08269111 W. L. Hermina
MS 08269111 P. R. Schunk
MS0826 9111 R. R. Rao
MS0826 9111 P. A. Sackinger
MS 08349112 T. A. Baer
MS 08269111 D. A. Labreche
MS 05579741 T. W. Simmermacher

Dr. Richard A. Cairncross
Drexel University
Department of Chemical Engineering
Philadelphia, PA 19104

in_filt.c out_filt.cMesh/Analysis

DAKOTAparams.in results.out

cost.sh

Figure A. DAKOTA interface scheme
Example Problems Engineering Applications - GOMA/EXODUS Application Example 241

.,

es.
98].
Dr. Ian Gates
University of Minnesota
Department of Chemical Engineering and Materials Science
421 Washington Ave. SE
Minneapolis, MN 55455

Additional References

Refer to

• [Eldred, M.S., Hart, W.E., Bohnhoff, W.J., Romero, V.J., Hutchinson, S.A., and Salinger,
A.G., 1996]

• [Eldred, M.S., Outka, D.E., Bohnhoff, W.J., Witkowski, W.R., Romero, V.J., Ponslet, E.R
and Chen, K.S., 1996]

for procedures and lessons learned in interfacing with complex engineering simulation cod
Key findings in complex engineering applications are also summarized in [Eldred, M.S., 19
Example Problems Engineering Applications - Additional References 242

-13,

of
.

s,

.,

/
-6,

d

f,
ign
,

Anderson, G., and Anderson, P., 1986The UNIX C Shell Field Guide, Prentice-Hall, Englewood
Cliffs, NJ.

Byrd, R.H., Schnabel, R.B., and Schultz, G.A., 1988Parallel quasi-Newton Methods for
Unconstrained Optimization, Mathematical Programming, 42(1988), pp. 273-306.

Coplien, J.O., 1992Advanced C++ Programming Styles and Idioms, Addison-Wesley, Reading,
MA.

Dennis, J.E., and Torczon, V.J., 1994Derivative-Free Pattern Search Methods for
Multidisciplinary Design Problems, paper AIAA-94-4349 in Proceedings of the 5th AIAA/
USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Panama
City, FL, Sept. 7-9, 1994, pp. 922-932.

Eckstein, J., Hart, W.E., and Phillips, C.A., 1997Resource management in a parallel mixed
integer programming package, Proceedings of the 1997 Intel Supercomputer Users Group
Conference (http://www.cs.sandia.gov/ISUG97/program.html), Albuquerque, NM, June 11
1997.

Eldred, M.S., and Schimel, B.D., 1999Extended Parallelism Models for Optimization on
Massively Parallel Computers, paper 16-POM-2 in Proceedings of the 3rd World Congress
Structural and Multidisciplinary Optimization (WCSMO-3), Amherst, NY, May 17-21, 1999

Eldred, M.S., and Hart, W.E., 1998Design and Implementation of Multilevel Parallel
Optimization on the Intel TeraFLOPS, paper AIAA-98-4707 in Proceedings of the 7th AIAA/
USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Loui
MO, Sept. 2-4, 1998, pp. 44-54.

Eldred, M.S., 1998Optimization Strategies for Complex Engineering Applications, Sandia
Technical Report SAND98-0340, Sandia National Laboratories, Albuquerque, NM.

Eldred, M.S., Hart, W.E., Bohnhoff, W.J., Romero, V.J., Hutchinson, S.A., and Salinger, A.G
1996Utilizing Object-Oriented Design to Build Advanced Optimization Strategies with
Generic Implementation, paper AIAA-96-4164 in Proceedings of the 6th AIAA/USAF/NASA
ISSMO Symposium on Multidisciplinary Analysis and Optimization, Bellevue, WA, Sept. 4
1996, pp. 1568-1582.

Eldred, M.S., Outka, D.E., Bohnhoff, W.J., Witkowski, W.R., Romero, V.J., Ponslet, E.R., an
Chen, K.S., 1996Optimization of Complex Mechanics Simulations with Object-Oriented
Software Design, Computer Modeling and Simulation in Engineering, Vol. 1, No. 3, August
1996. Revised and extended from Eldred, M.S., Outka, D.E., Fulcher, C.W., and Bohnhof
W.J.,Optimization of Complex Mechanics Simulations with Object-Oriented Software Des,
paper AIAA-95-1433 in Proceedings of the 36th AIAA/ASME/ ASCE/AHE/ASC Structures
Structural Dynamics, and Materials Conference, New Orleans, LA, April 10-13, 1995, pp.
2406-2415.
DAKOTA Manuals 243

ies,

 for
Friedman, J. H., 1991Multivariate Adaptive Regression Splines, Annals of Statistics, Vol. 19,
No. 1, March 1991, pp. 1-141.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J., 1995Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, Reading, MA.

Gill, P.E., Murray, W., Saunders, M.A., and Wright, M.H., 1986User’s Guide for NPSOL
(Version 4.0): A Fortran Package for Nonlinear Programming, System Optimization
Laboratory, TR SOL-86-2, Stanford University, Stanford, CA.

Gill, P.E., Murray, W., and Wright, M.H., 1981Practical Optimization, Academic Press, San
Diego, CA.

Gropp, W., and Lusk, E., 1996User’s Guide for mpich, a Portable Implementation of MPI,
Argonne National Laboratory, Mathematics and Computer Science Division, Report ANL/
MCS-TM-ANL-96/6.

Gropp, W., Lusk, E., and Skjellum, A., 1994Using MPI, Portable Parallel Programing with the
Message-Passing Interface, The MIT Press, Cambridge, MA.

Hart, W.E., 1997SGOPT, A C++ Library of (Stochastic) Global Optimization Algorithms,
Sandia Report SAND98-xxxx, Sandia National Laboratories, Albuquerque, NM.

Kernighan, B.W., and Ritchie, D.M., 1988The C Programming Language, Second Edition,
Prentice Hall PTR, Englewood Cliffs, NJ.

Meza, J.C., 1994OPT++: An Object-Oriented Class Library for Nonlinear Optimization, Sandia
Report SAND94-8225, Sandia National Laboratories, Livermore, CA.

Meza, J.C., and Plantenga, T.D., 1995Optimal Control of a CVD Reactor for Prescribed
Temperature Behavior, Sandia Technical Report SAND95-8224, Sandia National Laborator
Livermore, CA.

Moen, C.D., Spence, P.A., and Meza, J.C., 1995Optimal Heat Transfer Design of Chemical
Vapor Deposition Reactors, Sandia Technical Report SAND95-8223, Sandia National
Laboratories, Livermore, CA.

Moen, C.D., Spence, P.A., Meza, J.C., and Plantenga, T.D., 1996 “Automatic Differentiation
Gradient-Based Optimization of Radiatively Heated Microelectronics Manufacturing
Equipment”, paper AIAA-96-4118 inProceedings of the 6th AIAA/USAF/NASA/ISSMO
Symposium on Multidisciplinary Analysis and Optimization, Bellevue, WA, pp. 1167-1175.
DAKOTA Manuals 244

tion

is

luid/

ue,

6.
Ponslet, E.R., and Eldred, M.S., 1996 “Discrete Optimization of Isolator Locations for Vibra
Isolation Systems: an Analytical and Experimental Investigation,” paper AIAA-96-4178 in
Proceedings of the 6th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analys
and Optimization, Bellevue, WA, Sept. 4-6, 1996, pp. 1703-1716. Also appears as Sandia
Technical Report SAND96-1169, May 1996.

Schunk, P.R., Sackinger, P.A., Rao, R.R., Chen, K.S., Cairncross, R.A., 1995GOMA - A Full-
Newton Finite Element Program for Free and Moving Boundary Problems with Coupled F
Solid Momentum, Energy, Mass, and Chemical Species Transport: User’s Guide, Sandia
Report SAND95-2937, Sandia National Laboratories, Albuquerque, NM.

Sjaardema, G.D., 1992APREPRO: An Algebraic Preprocessor for Parameterizing Finite
Element Analyses, Sandia Report SAND92-2291, Sandia National Laboratories, Albuquerq
NM.

Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Dongarra, J., 1996MPI: The Complete
Reference, MIT Press, Cambridge, MA.

Tong, C.H., and Meza, J.C., 1997DOOMSDACE: A Distributed Object-Oriented Software with
Multiple Samplings for the Design and Analysis of Computer Experiments, Sandia Technical
Report SAND97-XXXX (draft as yet unpublished).

Vanderplaats Research and Development, 1995DOT Users Manual, Version 4.20, Inc., Colorado
Springs.

Weatherby, J.R., Schutt, J.A., Peery, J.S., and Hogan, R.E., 1996Delta: An Object-Oriented
Finite Element Code Architecture for Massively Parallel Computers, SAND96-0473.

Zimmerman, D.C., 1996Genetic Algorithms for Navigating Expensive and Complex Design
Spaces, Final Report for Sandia National Laboratories contract AO-7736 CA 02, Sept. 199
DAKOTA Manuals 245

	DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estima...
	Abstract

	Acknowledgment
	Development of DAKOTA was funded by the Engineering Science Research Foundation, the Computer Sci...
	The development of this software involved many technical staff and contractors across Sandia- Alb...
	The authors also greatly appreciate the helpful comments made by Ben Blackwell and Todd Simmermac...

	Documentation Versions
	Since the DAKOTA architecture is flexible and extensible, its capabilities are continuously evolv...
	The software documentation can be published using either hardcopy or online formats. The hardcopy...
	http://endo.sandia.gov/DAKOTA/papers/Dakota_online.pdf
	Contact the authors at mseldre@sandia.gov if problems are encountered in accessing this file.

	Table of Contents
	Table of Contents 5
	List of Figures 14
	List of Tables 15
	DAKOTA Introduction 17
	Capability Introduction 52
	Optimization Capabilities 54
	Uncertainty Assessment Capabilities 58
	Nonlinear Least Squares Capabilities 60
	Parameter Study Capabilities 62
	Strategy Capabilities 70
	Simulation Interfacing 77
	Exploiting Parallelism 99
	Commands Introduction 112
	Interface Commands 127
	Variables Commands 134
	Responses Commands 141
	Strategy Commands 150
	Method Commands 156
	Installation Guide 180
	Installation Examples 187
	Textbook Example 192
	Rosenbrock Example 204
	Cylinder Head Example 208
	Engineering Applications 216

	List of Figures
	Figure 1. Container wall-to-end-cap seal. 20
	Figure 2. A graphical representation of the container optimization problem. 22
	Figure 3. Fortran listing of the interface for the container example. 24
	Figure 4. C language listing of the container simulator example. 25
	Figure 5. C++ listing of the container optimization example 26
	Figure 6. DAKOTA input file for the container optimization example. 28
	Figure 7. Example DAKOTA output 32
	Figure 8. DAKOTA input file for the parallel container optimization example. 39
	Figure 9. UNIX shell script file for parallel DAKOTA. 40
	Figure 10. Sample output results for a parallel DAKOTA run 41
	Figure 11. Generalizations of optimizer constraint handling capabilities. 45
	Figure 12. Iterator and Strategy Hierarchies 52
	Figure 13. Example centered parameter study. 67
	Figure 14. Example multidimensional parameter study 68
	Figure 15. Uncoupled multilevel hybrid optimization strategy 72
	Figure 16. Uncoupled adaptive multilevel hybrid optimization strategy 73
	Figure 17. Sequential approximate optimization strategy 75
	Figure 18. The DakotaInterface class hierarchy 78
	Figure 19. The Application Interface Concept 79
	Figure 20. Parameters file data format, standard option 86
	Figure 21. Parameters file data format, APREPRO option 88
	Figure 22. Results file data format 89

	List of Tables
	Table 1. Constraints 44
	Table 2. Variables 46
	Table 3. Local vs. global 47
	Table 4. Smooth vs. nonsmooth 48
	Table 5. Algorithmic parallelism 49
	Table 6. All inclusive summary 50
	Table 7. Other method and strategy classifications 51
	Table 8. Request vector codes 87
	Table 9. Specification detail for set identifier 129
	Table 10. Specification detail for application interfaces 129
	Table 11. Additional specifications for system call application interfaces 131
	Table 12. Additional specifications for direct application interfaces 132
	Table 13. Specification detail for approximation interfaces 132
	Table 14. Specification detail for test interfaces 133
	Table 15. Specification detail for set identifier 136
	Table 16. Specification detail for continuous design variables 137
	Table 17. Specification detail for discrete design variables 137
	Table 18. Specification detail for uncertain variables specification 138
	Table 19. Specification detail for continuous state variables 139
	Table 20. Specification detail for discrete state variables 140
	Table 21. Specification detail for set identifier 143
	Table 22. Specification detail for active set vector usage specification 144
	Table 23. Specification detail for optimization data sets 145
	Table 24. Specification detail for nonlinear least squares data sets 145
	Table 25. Specification detail for generic response function data sets 146
	Table 26. Specification detail for numerical gradients 147
	Table 27. Specification detail for mixed gradients 148
	Table 28. Specification detail for single_method strategies 152
	Table 29. Specification detail for uncoupled multi_level strategies 153
	Table 30. Specification detail for coupled multi_level strategies 153
	Table 31. Specification detail for seq_approximate_opt strategies 154
	Table 32. Specification detail for opt_under_uncertainty strategies 154
	Table 33. Specification detail for branch_and_bound strategies 155
	Table 34. Specification detail for the method independent controls 160
	Table 35. Specification detail for the DOT methods 162
	Table 36. Specification detail for the NPSOL SQP method 164
	Table 37. Specification detail for the OPT++ conjugate gradient method 167
	Table 38. Specification detail for unconstrained and bound-constrained Newton-based OPT++ methods...
	Table 39. Specification detail for barrier-constrained Newton OPT++ methods 167
	Table 40. Specification detail for the OPT++ bound constrained ellipsoid method 168
	Table 41. Specification detail for the OPT++ PDS method 168
	Table 42. Specification detail for OPT++ new method testing 168
	Table 43. Specification detail for SGOPT method dependent controls 170
	Table 44. Specification detail for the SGOPT GA methods 171
	Table 45. Specification detail for SGOPT real GA crossover and mutation 171
	Table 46. Specification detail for SGOPT integer GA crossover and mutation 172
	Table 47. Specification detail for the SGOPT CPS methods 172
	Table 48. Specification detail for the SGOPT Solis-Wets method 174
	Table 49. Specification detail for the SGOPT sMC method 174
	Table 50. Specification detail for the Monte Carlo probability method 175
	Table 51. Specification detail for the mean value method 176
	Table 52. final_point specification detail for the vector parameter study 177
	Table 53. step_vector specification detail for the vector parameter study 177
	Table 54. Specification detail for the list parameter study 178
	Table 55. Specification detail for the centered parameter study 179
	Table 56. Specification detail for the multidimensional parameter study 179
	DAKOTA Introduction
	Motivation
	What is DAKOTA?
	Tutorial
	Getting started
	A basic optimization problem
	Figure 1 Container wall-to-end-cap seal.
	(1)
	(2)
	(3)
	(4)
	Figure 2 A graphical representation of the container optimization problem.

	(5)

	Constructing the interface
	Figure 3 Fortran listing of the interface for the container example.
	Figure 4 C language listing of the container simulator example.
	Figure 5 C++ listing of the container optimization example

	Creating a DAKOTA input file
	Figure 6 DAKOTA input file for the container optimization example.

	Running DAKOTA
	Interpreting the results
	Figure 7 Example DAKOTA output

	Some useful features of DAKOTA
	Restarting DAKOTA
	The parallel interface
	Figure 8 DAKOTA input file for the parallel container optimization example.
	Figure 9 UNIX shell script file for parallel DAKOTA.
	Figure 10 Sample output results for a parallel DAKOTA run

	Decision Tables for DAKOTA Methods and Strategies

	Table 1 Constraints
	Figure 11 Generalizations of optimizer constraint handling capabilities.

	Table 2 Variables
	Table 3 Local vs. global
	Table 4 Smooth vs. nonsmooth
	Table 5 Algorithmic parallelism
	Table 6 All inclusive summary
	Table 7 Other method and strategy classifications
	Capability Introduction
	Iterator and Strategy Hierarchies
	Figure 12 Iterator and Strategy Hierarchies

	Optimization Capabilities
	Introduction
	DOT Library
	NPSOL Library
	OPT++ Library
	SGOPT Library

	Uncertainty Assessment Capabilities
	Introduction
	Monte Carlo Probability
	Mean Value

	Nonlinear Least Squares Capabilities
	Introduction
	Gauss-Newton

	Parameter Study Capabilities
	Introduction
	Initial Values
	Data Cataloguing

	Vector Parameter Study
	List Parameter Study
	Centered Parameter Study
	Figure 13 Example centered parameter study.

	Multidimensional Parameter Study
	(6)
	Figure 14 Example multidimensional parameter study

	Strategy Capabilities
	Introduction
	Single Method
	Multilevel Hybrid Optimization
	The Uncoupled Approach
	Figure 15 Uncoupled multilevel hybrid optimization strategy

	The Uncoupled Adaptive Approach
	Figure 16 Uncoupled adaptive multilevel hybrid optimization strategy

	The Coupled Approach

	Sequential Approximate Optimization
	Figure 17 Sequential approximate optimization strategy

	Optimization Under Uncertainty
	Branch and Bound

	Simulation Interfacing
	Dakota Interface Abstraction
	Figure 18 The DakotaInterface class hierarchy

	The Application Interface
	Figure 19 The Application Interface Concept

	The Direct Function Application Interface
	1. the functions to be invoked must have their main programs changed into callable functions with...
	2. the if-else blocks in DirectFnApplicInterface::execute() must be extended to include the new f...
	3. the DAKOTA system must be recompiled and linked with the new function object files or libraries
	3-piece Interface
	1-piece Interface

	The System Call Application Interface
	3-piece Interface
	1-piece Interface
	Additional Features
	File saving
	File tagging
	Unix temporary files
	Common filtering operations

	Examples
	The NO_FILTER option
	The named filter option

	DAKOTA File Data Formats
	Parameters file format (standard)
	Figure 20 Parameters file data format, standard option

	Table 8 Request vector codes
	Parameters file format (APREPRO)
	Figure 21 Parameters file data format, APREPRO option

	Results file format
	Figure 22 Results file data format

	Active set vector control
	Examples
	Failure capturing
	Failure detection
	Failure communication
	System call application interfaces
	Direct application interfaces

	Failure recovery
	Abort
	Retry
	Recover
	Continuation

	The Approximation Interface
	Building an approximation
	Updating an approximation
	Modifying an approximation
	Performing function evaluations

	The RSM Approximation Interface
	(7)

	The MARS Approximation Interface
	The ANN Approximation Interface
	Exploiting Parallelism
	Parallelism Introduction
	1. Algorithmic coarse-grained parallelism: This parallelism involves the exploitation of multiple...
	2. Algorithmic fine-grained parallelism: This involves computing the basic computational steps of...
	3. Function evaluation coarse-grained parallelism: This involves simultaneous computation of sepa...
	4. Function evaluation fine-grained parallelism: This involves parallelization of the solution st...

	Enabling Software Components
	Direct function synchronization
	Synchronous
	Asynchronous

	System call synchronization
	Synchronous
	Asynchronous

	Master-slave algorithm
	Single-level parallelism
	Multilevel parallelism
	Pending Extensions

	Implementation of Parallelism
	Single-processor DAKOTA implementation
	Multiprocessor DAKOTA implementation

	Specifying Parallelism
	The Model
	The Iterator
	Single-processor DAKOTA specification
	Multiprocessor DAKOTA specification

	Running a parallel DAKOTA job
	Single-processor DAKOTA execution
	Multiprocessor DAKOTA execution
	Caveats

	Commands Introduction
	Overview
	IDR Input Specification File
	1. In the input specification, required parameters are enclosed in {}’s, optional parameters are ...
	2. Keyword specifications (i.e., strategy, method, variables, interface, and responses) are delim...
	3. Each of the five keyword specifications begins with a <KEYWORD = name>, <FUNCTION = handler_na...
	4. Some of the specifications within a keyword indicate that the user must supply <INTEGER>, <REA...
	5. Input is order-independent (except for entries in data lists) and white-space insensitive. Alt...
	6. Specifications may be abbreviated so long as the abbreviation is unique. For example, the appl...
	7. Comments are preceded by #.
	Common Specification Mistakes
	1. Documentation of new capability can lag the use of new capability in executables. When parsing...
	2. Since keywords are terminated with the newline character, care must be taken to avoid followin...
	3. Care must be taken to include newline escapes when embedding comments within a keyword specifi...

	Sample dakota.in Files
	Sample 1: Optimization
	Sample 2: Least Squares
	Sample 3: Nondeterministic Analysis
	Sample 4: Parameter Study
	Sample 5: Multilevel Hybrid Strategy

	Running DAKOTA
	Executable Location
	Remote installations
	Sandia developer-supported installations

	Command Line Inputs
	Execution Syntax
	Input/Output Management
	Restart Management

	Tabular descriptions

	Interface Commands
	Description
	Specification
	Set Identifier

	Table 9 Specification detail for set identifier
	Application Interface

	Table 10 Specification detail for application interfaces
	Table 11 Additional specifications for system call application interfaces
	Table 12 Additional specifications for direct application interfaces
	Approximation Interface

	Table 13 Specification detail for approximation interfaces
	Test Interface

	Table 14 Specification detail for test interfaces
	Variables Commands
	Description
	Specification
	Set Identifier

	Table 15 Specification detail for set identifier
	Design Variables

	Table 16 Specification detail for continuous design variables
	Table 17 Specification detail for discrete design variables
	Uncertain Variables

	Table 18 Specification detail for uncertain variables specification
	State Variables

	Table 19 Specification detail for continuous state variables
	Table 20 Specification detail for discrete state variables
	Responses Commands
	Description
	Specification
	Set Identifier

	Table 21 Specification detail for set identifier
	Active Set Vector Usage

	Table 22 Specification detail for active set vector usage specification
	Function specification
	Objective and Constraint Functions (Optimization Data Set)

	Table 23 Specification detail for optimization data sets
	Least Squares Terms (Least Squares Data Set)

	Table 24 Specification detail for nonlinear least squares data sets
	Response Functions (Generic Data Set)

	Table 25 Specification detail for generic response function data sets
	Gradient specification
	No Gradients
	Numerical Gradients

	Table 26 Specification detail for numerical gradients
	Analytic Gradients
	Mixed Gradients

	Table 27 Specification detail for mixed gradients
	Hessian specification
	No Hessians
	Analytic Hessians

	Strategy Commands
	Description
	Specification
	Single Method Commands

	Table 28 Specification detail for single_method strategies
	Multilevel Hybrid Optimization Commands

	Table 29 Specification detail for uncoupled multi_level strategies
	Table 30 Specification detail for coupled multi_level strategies
	Sequential Approximate Optimization Commands

	Table 31 Specification detail for seq_approximate_opt strategies
	Optimization Under Uncertainty Commands

	Table 32 Specification detail for opt_under_uncertainty strategies
	Branch and Bound Commands

	Table 33 Specification detail for branch_and_bound strategies
	Method Commands
	Description
	Specification
	Method Independent Controls

	Table 34 Specification detail for the method independent controls
	DOT Methods
	Method independent controls
	Method dependent controls

	Table 35 Specification detail for the DOT methods
	NPSOL Method
	Method independent controls
	Method dependent controls

	Table 36 Specification detail for the NPSOL SQP method
	OPT++ Methods
	Method independent controls
	Method dependent controls

	Table 37 Specification detail for the OPT++ conjugate gradient method
	Table 38 Specification detail for unconstrained and bound-constrained Newton-based OPT++ methods
	Table 39 Specification detail for barrier-constrained Newton OPT++ methods
	Table 40 Specification detail for the OPT++ bound constrained ellipsoid method
	Table 41 Specification detail for the OPT++ PDS method
	Table 42 Specification detail for OPT++ new method testing
	SGOPT Methods
	Method independent controls
	Method dependent controls

	Table 43 Specification detail for SGOPT method dependent controls
	Genetic algorithms (GAs)

	Table 44 Specification detail for the SGOPT GA methods
	Table 45 Specification detail for SGOPT real GA crossover and mutation
	Table 46 Specification detail for SGOPT integer GA crossover and mutation
	Coordinate pattern search (CPS)

	Table 47 Specification detail for the SGOPT CPS methods
	Solis-Wets

	Table 48 Specification detail for the SGOPT Solis-Wets method
	Stratified Monte Carlo

	Table 49 Specification detail for the SGOPT sMC method
	Nondeterministic Methods
	Monte Carlo Probability Method

	Table 50 Specification detail for the Monte Carlo probability method
	Mean Value Method

	Table 51 Specification detail for the mean value method
	Parameter Study Methods
	Vector Parameter Study

	Table 52 final_point specification detail for the vector parameter study
	Table 53 step_vector specification detail for the vector parameter study
	List Parameter Study

	Table 54 Specification detail for the list parameter study
	Centered Parameter Study

	Table 55 Specification detail for the centered parameter study
	Multidimensional Parameter Study

	Table 56 Specification detail for the multidimensional parameter study
	Installation Guide
	Distributions and Checkouts
	Basic Installation
	Configuration Details
	1. Makefile.${target_vendor}
	2. Makefile
	3. config.status
	Configuring with specific vendor optimizers
	Configuring with the Message Passing Interface

	Makefile Details
	Caveats
	Intel cross-compilation
	System modifications

	Installation Examples
	Sun Solaris platform

	Textbook Example
	Textbook Problem Formulation
	(8)
	(9)
	(10)
	(11)
	(12)
	(13)

	Methods
	Results
	Optimization
	Least Squares

	Rosenbrock Example
	Rosenbrock Problem Formulation
	(14)
	(15)
	(16)
	(17)

	Methods
	Results

	Cylinder Head Example
	Cylinder Head Problem Formulation
	(18)
	(19)
	(20)
	(21)
	(22)
	(23)
	(24)
	(25)
	(26)
	(27)
	(28)

	Methods
	Optimization Results

	Engineering Applications
	Transportation Cask Example
	GOMA/EXODUS Application Example
	Standard text_book example
	(29)

	Example text_book recast in GOMA format: Filter Introduction
	DAKOTA Filter Tutorial
	(30)
	1. Change directories into the “tutorial” directory (this location will depend on the course you ...
	2. You will notice the directory contains five files: in_filt.c, out_filt.c, dak_goma.h, cost.sh,...
	3. Now execute the command:
	4. Now look at the input filter using the command:
	5. The final file is the output filter (out_filt.c). Normally, it reads an EXODUS file to get the...
	6. To compile a program with EXODUS subroutines in it, excute a command similar to:
	7. Now the optimization can be run. To execute the optimization, issue the command:

	Dryer Design Example
	1. There are a few differences in the input specification to DAKOTA. The specification is in drye...
	2. The shell function dryer.sh is identical to cost.sh described above except for the GOMA evalua...
	3. The input filter is identical. To check this execute:
	4. The simulation is identical to the template dryer.ml provided to you in your distribution. If ...
	5. The major changes are in the output filter, dryer.c for this problem. Only the cost function e...
	6. To compile a program with EXODUS subroutines in it, execute a command similar to:
	7. To run the simulation, just type:
	8. Sit back and watch it run.
	1. The input specification, dryer.in, for DAKOTA is as follows:
	2. The input filter in FORTRAN is a little less general than the one written in C. It is not easy...
	3. The function that evaluates the cost function, dryer.f, is now described. As with the input fi...
	4. To compile a FORTRAN program with EXODUS commands in it, execute a command similar to:
	5. To run the simulation, just type
	6. Sit back and watch it run.

	Slot Coater Example
	(31)
	1. As with all the examples before, the first file necessary is the DAKOTA input specification. T...
	2. The C-shell file, slot.sh, should look pretty familiar also
	3. The input filter in_filt.c is identical to all the previous input filters.
	4. The major difference is in the cost function, slot.c. The subroutines main() and asv_read() ar...
	5. The converge() routine is fairly basic. It reads the global variables from the EXODUS database...
	6. Now compile the code and run DAKOTA.

	Appendix
	1. Set up optimization by writing a DAKOTA input file. (See page 2-4 for example)
	2. Write an input filter to take the file params.in generated by DAKOTA (format of parameter file...
	3. Now parameterize your model so that the design variables that you want to vary can be easily c...
	4. Write a program (out_filt.c) that takes the output from your code, evaluates your cost functio...
	5. In this tutorial, the programs that result from steps 2-4 are driven by a shell program cost.s...

	Additional References
	Anderson, G., and Anderson, P., 1986
	Byrd, R.H., Schnabel, R.B., and Schultz, G.A., 1988
	Coplien, J.O., 1992
	Dennis, J.E., and Torczon, V.J., 1994
	Eckstein, J., Hart, W.E., and Phillips, C.A., 1997
	Eldred, M.S., and Schimel, B.D., 1999
	Eldred, M.S., and Hart, W.E., 1998
	Eldred, M.S., 1998
	Eldred, M.S., Hart, W.E., Bohnhoff, W.J., Romero, V.J., Hutchinson, S.A., and Salinger, A.G., 1996
	Eldred, M.S., Outka, D.E., Bohnhoff, W.J., Witkowski, W.R., Romero, V.J., Ponslet, E.R., and Chen...
	Friedman, J. H., 1991
	Gamma, E., Helm, R., Johnson, R., and Vlissides, J., 1995
	Gill, P.E., Murray, W., Saunders, M.A., and Wright, M.H., 1986
	Gill, P.E., Murray, W., and Wright, M.H., 1981
	Gropp, W., and Lusk, E., 1996
	Gropp, W., Lusk, E., and Skjellum, A., 1994
	Hart, W.E., 1997
	Kernighan, B.W., and Ritchie, D.M., 1988
	Meza, J.C., 1994
	Meza, J.C., and Plantenga, T.D., 1995
	Moen, C.D., Spence, P.A., and Meza, J.C., 1995
	Moen, C.D., Spence, P.A., Meza, J.C., and Plantenga, T.D., 1996
	Ponslet, E.R., and Eldred, M.S., 1996
	Schunk, P.R., Sackinger, P.A., Rao, R.R., Chen, K.S., Cairncross, R.A., 1995
	Sjaardema, G.D., 1992
	Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Dongarra, J., 1996
	Tong, C.H., and Meza, J.C., 1997
	Vanderplaats Research and Development, 1995
	Weatherby, J.R., Schutt, J.A., Peery, J.S., and Hogan, R.E., 1996
	Zimmerman, D.C., 1996

